Ind- and Pro- definable sets Permalink
Kamensky, M. (2007). Ind- and Pro- definable sets. Ann. Pure Appl. Logic, 147(3), 180–186. https://doi.org/10.1016/j.apal.2007.04.003
Kamensky, M. (2007). Ind- and Pro- definable sets. Ann. Pure Appl. Logic, 147(3), 180–186. https://doi.org/10.1016/j.apal.2007.04.003
Kamensky, M. (2009). Definable groups of partial automorphisms. Selecta Math. (N.S.), 15(2), 295–341. https://doi.org/10.1007/s00029-009-0530-0
Kamensky, M. (2009). The model completion of the theory of modules over finitely generated commutative algebras. J. Symbolic Logic, 74(3), 734–750. https://doi.org/10.2178/jsl/1245158083
Kamensky, M. (2011). A categorical approach to internality. In B. Hart, T. G. Kucera, A. Pillay, P. J. Scott, & R. A. G. Seely (Eds), Models, logics, and higher-dimensional categories (Vol. 53, pp. 139–156). American Mathematical Society. https://arxiv.org/abs/1012.3185
Kamensky, M. (2013). Tannakian formalism over fields with operators. Int. Math. Res. Not. IMRN, 24, 5571–5622. https://doi.org/10.1093/imrn/rns190
Kamensky, M. (2015). Model theory and the Tannakian formalism. Trans. Amer. Math. Soc., 367(2), 1095–1120. https://doi.org/10.1090/S0002-9947-2014-06062-5
Kamensky, M., & Pillay, A. (2016). Interpretations and differential Galois extensions. Int. Math. Res. Not. IMRN, 24, 7390–7413. https://doi.org/10.1093/imrn/rnw019
Hils, M., Kamensky, M., & Rideau, S. (2018). Imaginaries in separably closed valued fields. Proc. Lond. Math. Soc. (3), 116(6), 1457–1488. https://doi.org/10.1112/plms.12116
Beyarslan, Ö., Hoffmann, D. M., Kamensky, M., & Kowalski, P. (2019). Model theory of fields with free operators in positive characteristic. Trans. Amer. Math. Soc., 372(8), 5991–6016. https://doi.org/10.1090/tran/7896
Kamensky, M., Starchenko, S., & Ye, J. (2023). Peterzil–Steinhorn subgroups and μ-stabilizers in ACF. J. Inst. Math. Jussieu, 22(3), 1003–1022. https://doi.org/10.1017/S147474802100030X
Kamensky, M. (2023). Higher internal covers. Model Theory, 2(2), 449–479. https://doi.org/10.2140/mt.2023.2.449
Kamensky, M., & Moosa, R. (2024). Binding groups for algebraic dynamics. Algebra and Number Theory. https://arxiv.org/abs/2405.06092
Number theory and algebraic geometry seminar, Be’er-Sheva, Israel
Model theory seminar, Oxford, UK
Oxford Workshop in Model Theory, Oxford University, Oxford, UK
Pure math seminar, Norwich, UK
Annual Conference of the Israel Mathematical Union, Israel
Model theory seminar, Hamilton, Canada
Model theory seminar, Chicago, USA
Logic seminar, Manchester, UK
Differential Fields Workshop, University of Leeds
Model Theory and Algebra Workshop, University of Camerino, Italy
Department Colloquium, Waterloo, Canada
Logic Colloquium, Bern, Switzerland
Logic Seminar, Maryland, USA
Kolchin Seminar, New-York, USA
Algebraic Geometry and Representation theory seminar, Rehovot, Israel
Meeting on differential algebraic geometry, USA
Logic Seminar, Waterloo, Canada
Model-Theoretic Methods in Number Theory and Algebraic Differential Equations, Manchester, UK
Kolchin Seminar, New-York, USA
Model theory seminar, Paris
From Geometric Stability Theory to Tame Geometry, Toronto, Canada
Logic Seminar, New-York, USA
Colloquium, Jerusalem, Israel
Kolchin Seminar, New-York, USA
Interactions between Representation Theory and Model Theory, Canterbury, UK
Kolchin Seminar, New-York, USA
Differential and difference equations, integrable systems, model theory, Leeds, UK
Workshop on Interactions between Model Theory and Arithmetic Dynamics, Toronto, Canada
Model theory seminar, Wrocław, Poland
Logic seminar, Jerusalem, Israel