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MOSHE KAMENSKY

Abstract. These are lecture notes from a graduate course on p-adic and
motivic integration (given at BGU). The main topics are: Quantifier elimi-
nation in the p-adics, rationality of p-adic zeta functions and their motivic
analogues, basic model theory of algebraically closed valued fields, mo-
tivic integration following Hrushovski and Kazhdan, application to the
Milnor fibration. Background: basic model theory and a bit of algebraic
geometry

1. p-adic integration

1.1. Counting solutions in finite rings. Consider a systemX of polynomial
equations in n variables over Z. Understanding the set X(Z) is, generally,
very difficult, so we make (rough) estimates: Given a prime number p > 0,
we consider the set X(Z/pkZ) of solutions of X in the finite ring Z/pkZ,
viewing them as finer and finer approximations, as k increases. Each such
set is finite, and we may hope to gain insight on the set of solutions by un-
derstanding the behaviour of the sequence ak = #X(Z/pkZ), which we
organise into a formal power series PX(T) =

∑∞
k=0 akT

k, called the Poincaré
series for X. Igusa proved: Poincaré series

Theorem 1.1.1. The series PX(T) is a rational function of T

Example 1.1.2. Assume that X is the equation x1 = 0. There are then ak =

p(n−1)k solutions in Z/pkZ, and PX(T) =
∑

(pn−1T)k = 1
1−pn−1T

□

To outline the proof, we first note that the contribution of a given integer
x to the sequence (ai) is determined by the sequence (xk) of its residues
mod pk. Each such sequence has the property that πk,l(xk) = xl, where
πk,l : Z/pkZ −→ Z/plZ for k ⩾ l is the residue map. The set of sequences
(xk) with this property forms a ring (with pointwise operations), called the
ring of p-adic integers, Zp. If the first k entries of such a sequence are 0, one p-adic integers

may view this sequence as “close to 0, up to the k-th approximation”. This
notion of closeness can be formalised by defining the absolute value |x| of an absolute value

element x = (xi) to be p−k, where k is the smallest i for which xi ̸= 0 (and
|0| = 0). The number k is called the valuation vp(x) of x. Thus, x is k-close valuation

to 0 if |x| ⩽ p−k (one could choose a different base instead of p to obtain the
same topology; the motivation for choosing p will soon become apparent.)
It is easy to check that Zp is a local ring whose maximal ideal is the set of
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elements of norm smaller than 1. As a topological space it is complete (every
Cauchy sequence converges) and compact.

We now assume, for simplicity, thatX is given by a single equation, F(x̄) =
0. Thus,
ak =#({x̄ ∈ Zn

p : F(πk(x̄)) = 0}/Bk) = #({x̄ ∈ Zn
p : πk(F(x̄)) = 0}/Bk) =

=#({x̄ ∈ Zn
p : |F(x̄)| ⩽ p−k}/Bk)

(1)

where Bk is the (n-dimensional) ball |xi| ⩽ p−k of radius p−k. The set
Xk = {x̄ ∈ Zn

p : |F(x̄)| ⩽ p−k} can be viewed as a neighbourhood of the set
of solutions X(Zp), and we are counting the number of balls in this neigh-
bourhood. If we were given a measure µ on Zn

p which is invariant under
translations (and for which Xk and Bk are measurable), we could thus write
ak =

µ(Xk)
µ(Bk)

. In fact, we have such a measure: It is the Haar measure, theHaar measure

unique (after normalisation) translation invariant measure that exists for
any locally compact topological group. Since our group is actually com-
pact, we may normalise so that the whole group B0 = Zn

p has measure 1.
We may then compute the measure of the ball Bk: there are pnk disjoint
translates of it that cover B0, hence µ(Bk) = p

−nk.
The existence of a measure allows us to integrate, and the above calcu-

lations suggest that our series PX is related to integrating |F(x)|. In fact, we
have∫
B0

|F(x)|sdµ =

∞∑
k=0

µ({x ∈ B0 : |F(x)| = p
−k})p−ks =

=
∑
k⩾0

p−ks(µ(Xk) − µ(Xk+1)) =

=
∑
k⩾0

akp
k(−n−s) − ak+1p

−npk(−n−s) =

= 1+
∑
k⩾1

ak(p
k(−n−s) − p−np(k−1)(−n−s)) =

= 1+
∑
k⩾1

ak(1− p
s)pk(−n−s) = 1+ (1− ps)

∑
k⩾1

akp
k(−n−s)

(2)

This (C-valued) function, denoted ZF(s), is called the Igusa zeta function as-Igusa zeta function

sociated to F. We thus have that

ZF(s) = p
s + (1− ps)PX(p

−n−s) (3)

In particular, proving Theorem 1.1.1 amounts to proving that ZF(s) is a ra-
tional function of ps.

What did we gain from this translation? We have seen in Example 1.1.2
that ZF is rational when F is a coordinate function. It turns out that around
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a smooth point of X, there is an (appropriately defined) analytic change of
coordinates mapping a (p-adic) neighbourhood to a coordinate plane, and
F to a coordinate function (this is similar to the complex situation). There is,
further, a change of coordinates formula for integration, using which one
may reduce to a case similar to the example. When X is not smooth, one
must first use resolution of singularities, and integrate there (using, again,
the change of variable formula to relate the two integrals).

1.1.3. More general integrals. An element of X(Z/pkZ) need not come from
a solution in Zp. If we are interested only in those solutions that do lift to
solutions in Zp, we are led to consider the Serre series

∑
bkT

k of X, where Serre series

bk = #(X(Zp)/Bk). We note that X(Zp) is not invariant under translation
by BK, so to express the coefficients in terms of measure, we rewrite

bk = #((X(Zp) + Bk)/Bk) = µ(X̃k)/µ(Bk) (4)

where
X̃k = {x̄ ∈ Zn

p : ∃ȳ ∈ X(Zp)(|x̄− ȳ| ⩽ p−k)} (5)

is the set of points that are of distance at most p−k from solutions. We thus
see that the coefficients can again be written as integrals, but the domain
is not given by polynomial equations, but rather by conditions that involve
quantifiers: they are first order formulas in the language of p-adic fields, i.e.,
whose basic relations involve, on top of the field operations, the valuation
function.

What can be said about such integrals? Denef proved the following gen-
eralisation of Theorem 1.1.1

Theorem 1.1.4. Letni =
∫
Xi
pα(x,i)dµ, whereXi are uniformly definable subsets

of Zn
p , and α is a definable integer valued function. Then

∑
k nkT

k is a rational
function

The main ingredient in the proof of Theorem 1.1.4 is an analysis of the
shape of definable subsets the p-adic numbers: it is a quantifier elimination
result (in a suitable language), due to Ax–Kochen and Macintyre. We now
explain the statement and the proof of this result in more detail.

1.2. Quantifier elimination in the p-adics. For extra concreteness, we now
outline some structure of Zp, and the proof of quantifier elimination in the
p-adics. The original proof is from [3, 4] and [17]. See also [8, Ch. 4].

It will now be more convenient notationally to work with the valuation
v = vp. It follows from from the existence of the valuation that Zp is an
integral domain. Its field of fractions, Qp, is the field of p-adic numbers. The p-adic numbers

valuation and absolute value extend from Zp to Qp by multiplicativity, and
take values, respectively, in Z and in R⩾0. We note that Zp is the set of
elements with non-negative valuation. The pair (Qp, v) is an example of a
valued field:
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Definition 1.2.1. A valued field is a triple (K, Γ , v), where K is a field, Γ is an valued field

ordered abelian group, and v : Kx −→ Γ such that for all x,y ∈ Kx

(1) v(xy) = v(x) + v(y)
(2) v(x+ y) ⩾ min(v(x), v(y)) if x+ y ̸= 0

Since Γ is now an arbitrary group, it no longer makes sense to consider
pγ for γ ∈ Γ . However, we will still wish to use the absolute value nota-
tion (mostly for geometric intuition), and we do so by formally inverting
the order on Γ , and using multiplicative notation for the group operation.
In this case, we denote v by |·|, as before. The second condition then becomes
|x+ y| ⩽ max(|x|, |y|), and is called the ultrametric inequality.ultrametric inequality

We add an element 0 (or ∞ when using the additive notation) to Γ , and
extend the structure by specifying |0| = 0 (and v(0) = ∞). With the obvious
conventions, the conditions in Definition 1.2.1 are now valid for all x,y ∈ K.
Exercise 1.2.2. Show that (Qp,Z, vp) is a valued field

As in Qp, the subset Ov consisting of elements with non-negative valua-
tion is a local sub-ring of K, called the valuation ring. Its fraction field is K,valuation ring

and its maximal ideal is the set Mv of elements with positive valuation. The
residue field K̄ is Ov/Mv.residue field

Exercise 1.2.3. Let (K, Γ , v) be a valued field
(1) Show that if a ∈ K is a root of unity, then v(a) = 0
(2) Show that if K and K̄ do not have the same characteristic, then K has

characteristic 0
(3) Let γ ∈ Γ . Show that the relation v(x − y) ⩾ γ is an equivalence

relation on K
(4) Show that if v(x) > v(y), then v(x+y) = v(y) (geometrically, “every

triangle is isosceles”)
(5) Assume that p(x) is a monic polynomial over Ov, that has a root

a ∈ K. Then a ∈ Ov (i.e., Ov is integrally closed)
We view a valued field as a structure for the two-sorted language with a

sort VF for the field, and another sort Γ for the value group. The language
includes (initially) the ring language on VF, the ordered group language on
Γ, and a function symbol v : VF −→ Γ for the valuation. It is clear that the
axiom of valued fields are expressible in this language.

What is the theory of Qp in this language? We first note that the residue
field is completely determined: it is Fp, and we have representative for all
the classes in Qp. The value group is Z, so a discretely ordered abelian group
(has a minimal positive element). It will turn out that these are essentially
the only axioms, but currently, we give the following definition.
Definition 1.2.4. A p-adic field is a valued field (K, Γ , v), such that Γ has ap-adic field

minimal positive element 1, v(p) = 1, and the residue field is Fp.
It is clear that this is an elementary class, and that Qp is p-adic. To obtain

quantifier elimination, we will need to understand which equations can be
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solved in p-adic fields. We will need, in particular, to have quantifier elim-
ination in the value group, so we start with it.

1.2.5. Warm up: quantifier elimination in Z-groups. The theory of Z in the lan-
guage of ordered groups does not eliminate quantifiers: The set of even ele-
ments in Z is definable by ∃y(y+y = x), but not without quantifiers. More
generally, the set of elements divisible by n, for natural n, is definable, but
not quantifier free. To remedy this, we introduce relations Dn, interpreted
in Z as nZ.
Proposition 1.2.6. The theory of (Z,+, 0, 1,<, (nZ)n∈N) in the language for or-
dered groups, expanded by the divisibility predicates Dn, eliminates quantifiers.

For a theory T, by a T-structure we mean a sub-structure of a model of
T. Let τ : A −→ M a homomorphism from a T-structure to a model M. If
ϕ(ā, x̄) is a formula with ā ∈ A, we denote by ϕτ the formula ϕ(τ(ā), x̄).
In the proof of Proposition 1.2.6, we will utilise the following criterion (see
also [18] or [21]):
Proposition 1.2.7. A theory T eliminates quantifiers if for any T-structureA, any
models M1 and M2 containing it, and any quantifier free formula ϕ over A, if ϕ
is satisfiable inM1, then it is satisfiable inM2.
Proof. If not, there is (by induction on the complexity of the formula) a for-
mula ψ(x̄) = ∃y(ϕ(x̄,y)) (with ϕ quantifier free), that is not equivalent to
any quantifier-free formula. Let Σ be the set of quantifier-free formulas im-
plied by ψ. Since ψ is not quantifier-free, we may by compactness find a
modelM2 and a tuple ā satisfying Σ but not ψ.

Let p be the quantifier-free type of ā. We note that any tuple satisfying p
is isomorphic to ā as a structure. Again, since ψ is not quantifier-free, it is
consistent with p (otherwise, ψ and some formula θ from p are contradic-
tory, so the negation of θ is in Σ, contradicting that ā satisfies both Σ and
p). Thus, we may realise (a copy of) ā in a modelM1, where ψ(ā) holds. So
ϕ(ā,y) is satisfiable inM1 but not inM2. □
Remark 1.2.8. We note that the criterion in Prop. 1.2.7 becomes “harder” if
we increase A. There are at least two ways to use this observation. First, if
A is contained in a structureA1 such that every embedding ofA in a model
extends to an embedding of A1, we may assume that A = A1 to start with.

On the other hand, assume b ∈ M1. To extend the situation from A to
the substructure A(b) generated by b, we need to find b ′ ∈ M2 satisfying
the same quantifier-free type over A as b. This appears harder than the cri-
terion, but it becomes equivalent if we assume that M2 is a saturated model, saturated model

i.e., any quantifier-free type over a set of smaller cardinality than the cardi-
nality ofM2 is satisfied inM2. This assumption is harmless since (assuming
GCH) any model has a saturated elementary extension. □

Let T be the theory of Z as an ordered abelian group, as in Prop. 1.2.6.
We note that given for any non-zero integer n, there is, in any model M of
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T, a well defined map a 7→ a
n

, assigning to a the smallest element b of M
such that nb ⩾ a.

Proof of Prop. 1.2.6. We use Prop. 1.2.7. Let A be a T-structure, i.e., A is an
ordered abelian group. We first claim that we may assume that A is closed
under division by integers: given n, there is, for any a ∈ A, a unique 0 ⩽
i < n for which a + i is divisible by n (since this is a first order statement
true in Z). This is expressed as the quantifier free relationDn(a+ i), hence
depends only on the structure A (and not on the embedding in a model). It
follows that we may assume that A is closed under division insideM1 and
M2 (in other words, A is a pure subgroup of theMi: Mi/A is torsion-free).pure subgroup

We need to consider conjunctions of formulas of the following forms (and
their negations):

(1) nx = a
(2) nx < a
(3) Dm(nx+ a)

Where m,n are non-zero integers, and a ∈ A. We first note that if the con-
junction contains a formula of the first kind, then it has a solution in the
model if and only if Dn(a) holds. In particular, it does not depend on the
model. Furthermore, the solution is unique, and is in A, so the validity of
the rest of the formula is determined.

A formula of the second kind is equivalent to x < a
n

, so including the
inequations, a formula is equivalent to a finite disjunction of formulas a <
x < b ∧ θ(x) with a,b ∈ A ∪ {∞,−∞}, and θ a boolean combination of
formulas of the third kind. It suffices to deal with each disjunct separately.

As mentioned above, the residue of an element a ∈ Amodulo an integer
m is a well defined element of Z/mZ. Hence, satisfiability of such a formula
is completely determined by the theory of Z (essentially via the Chinese
remainder theorem). In particular, it does not depend on the model. □
Remark 1.2.9. It is easy to extract from the proof the precise set of axioms
used. Hence we have an explicit description of the theory of Z □
Exercise 1.2.10. Let M be a model of T. Show that M = Z × H, where H is
a uniquely divisible ordered abelian group, and the order on M is lexico-
graphic.
1.2.11. The theory of the p-adics. To show quantifier-elimination for Qp, we
will show a stronger result: we will describe explicitly a theory which ad-
mits quantifier-elimination (in a suitable language), and which is satisfied
by Qp.

As we have seen, to have quantifier-elimination, we need to be able to
determine the existence of solutions to quantifier-free formulas in one vari-
able. In (valued) fields, a central example is a polynomial equation in one
variable. If p(x) is a monic polynomial over Ov, and p(a) = 0 for some a
(necessarily in Ov, by Exercise 1.2.3), then ā ∈ K̄ is definitely a solution of
p̄, the “residual” polynomial over the residue field K̄ (this is the polynomial
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with the residue map applied to the coefficients). It turns out that in Qp the
converse is almost true: it is a Henselian valued field.
Definition 1.2.12. A valued field (K, v) is a Henselian valued field if whenever Henselian valued field

p(x) is a polynomial over Ov, and a0 is a simple root of p̄ in K̄, there is a
unique root a of p in Ov with ā = a0

We recall that a root a of p(x) is simple if it is not a root of p(x)
x−a

(equiva-
lently, of p ′(x)).
Remark 1.2.13. Geometrically, Ov can be viewed as the ring of (germs of)
functions around a fixed point 0 (say, on some curve). From this point of
view, Mv corresponds to the ideal of functions that take the value 0 at 0,
and the residue map a 7→ ā is evaluation of a at 0. The polynomial p over
Ov is viewed as a family of polynomials over a neighbourhood of 0, i.e.,
a family of finite sets. The residual polynomial p̄ then corresponds to the
finite set that lies over 0. The Henselian property says that any element of
this finite set can be extended to a section over the whole neighbourhood,
provided the point is simple (without multiplicities). Thus, it is a form of
the implicit function theorem. □

We now check that the notion is relevant to our situation, i.e., that Qp is
Henselian. This is the original Hensel’s Lemma:
Proposition 1.2.14 (Hensel’s Lemma). The field Qp is Henselian
Proof. It is enough to show that if q(x) is over O and has a simple root a over
Z/pnZ, it can be lifted to a (unique) root in Z/pn+1Z. Let b be any lift of a.
An arbitrary lift has the form b + cpn, for some c. Using Taylor expansion
we obtain

q(b+ cpn) = q(b) + q ′(b)cpn (6)
since higher powers of p vanish. Hence, we need to find an element c sat-
isfying q ′(b)cpn = −q(b) (in Z/pnZ). This can be done (uniquely) since
q ′(b) is invertible, and q(b) is a multiple of pn. □
Exercise 1.2.15. The argument can also be presented topologically, for an
arbitrary valued field. Recall that a normed field is complete if any Cauchy complete

sequence (sequence (an) satisfying limn,m|an − am| = 0) has a limit.
(1) Assume that the value group of a valued field is an Archimedean

group, i.e., any element is bounded by some integer, and that K is Archimedean group

complete. Show that K is Henselian
(2) Show that Qp is complete

Definition 1.2.16. A p-adically closed field is a p-adic field that is Henselian p-adically closed field

Hensel’s lemma shows that Qp is p-adically closed. It is clear that p-
adically closed fields are axiomatisable in the language of valued fields, as
above. However, the do not have elimination of quantifiers in this language:
The set of elements having an n-th root is not definable without quantifiers.
It turns out that this is the only obstacle:
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Theorem 1.2.17 ([3, 4, 17]). The theory of p-adically closed fields eliminates quan-
tifiers in the language expanded by the root predicates Rn, defined via Rn(x) ⇐⇒
∃y(yn = x) (as well as the divisibility predicates Dn from 1.2.6.)

To prove the theorem, we begin with some preliminaries on valued fields.
The Henselian property provides information about simple roots of poly-
nomials over O, inside O. The following lemma is a reformulation for the
more general situation.

Lemma 1.2.18. Let K be an Henselian valued field, and let F(x) =
∑
aix

i be a
polynomial over K. Assume that b ∈ K is such that

|F(b)| <
β2|F ′(b)|2

γ
(7)

where β = |b| and γ = max{|ai|β
i}. Then there is a unique a ∈ K such that

F(a) = 0 and |a− b| <
β2|F ′(b)|

γ

Proof. We first note that if the claim is true for F(x), then it is true for uF(vx)
for any u, v ∈ K. Hence, we may assume that b = 1 and γ = 1, i.e., p has
coefficients in O. We write a = 1 + F(1)

F ′(1)h, in the hope finding h for which
the claim is satisfied. Using Taylor expansion, we obtain the equation

0 = F(a) = F(1+
F(1)

F ′(1)
h) = F(1) + F(1)h+

F(1)2

F ′(1)2
h2g(h) (8)

for some polynomial g(h) over O. Assuming F(1) ̸= 0, we may divide by
it, to obtain a polynomial equation whose coefficients of degree bigger than
1 are multiples of F(1)

F ′(1)2 ∈ M. Hence, the equation reduces to h̄ + 1 = 0

in K̄, and −1 lifts to a unique root h. The difference between the resulting
root a and the approximate root 1 is thus |

F(1)
F ′(1) | < |F ′(1)|, as expected, and

uniqueness follows from the uniqueness of h. The case F(1) = 0 is obtained
similarly □

The following two results are completely algebraic statements about the
Galois theory of valued fields. Their proofs are omitted (at least for the
moment), and can be found, e.g., in [10] or in [14]. We note first that if v is
an extension of a valuation v0 on K to a field L, and σ is an automorphism
of L over K, then v ◦ σ is again a valuation extending v0. In other words,
Aut(L/K) acts on the set of valuations on L that extend v0.

Proposition 1.2.19. Let (K, Γ , v) be a valued field.
(1) v extends to a valuation on any extension field L of K (into a value group

extending Γ )
(2) The Galois group of K acts transitively on the set of valuations on Ka ex-

tending v.
(3) K is Henselian if and only if there is a unique extension of v to the algebraic

closure of K (i.e., the valuation ring of all extensions is the same)
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In particular, any field isomorphism between Henselian valued fields preserves the
valuation.

The above result implies that an algebraic extension of a Henselian field
induces an extension of the residue field, and of the value group. One can
ask to which extent these extensions control the full algebraic extension of
the valued field. In particular, if the extension is an immediate extension, i.e., immediate extension

does not induce an extension of either the residue field or the value group,
is it trivial? The answer is “no” in general, but “yes” with some additional
assumptions, as in the following proposition. We note that the assumption
holds for p-adic fields.

Proposition 1.2.20. Assume that a Henselian valued field (K, Γ , v) has residue
characteristic 0, or that it has residue characteristic p > 0, and is finitely ramified,
in the sense that there are finitely many values between 0 and v(p). If L is an
algebraic extension of K that does not extend the value group or the residue field,
then K = L.

In the proof of QE for ordered abelian groups, it was useful to assume
that the substructure A is closed under quantifier free definable functions
(division by n). The analogous construction for valued fields is called the
Henselisation.

Proposition 1.2.21. Any valued field (K, v) is contained in a Henselian valued
field Kh, such that any map (of valued fields) from K to a Henselian field L extends
uniquely to a map from Kh to L.

Proof. Let v1 be an extension of v to the algebraic closure of K. Let G be the
Galois group of K, let Gd be the stabiliser of v1 inside G, and let Kh be the
fixed field of Gd. It is easy to see that Gd is closed, hence it is the Galois
group of Kh. Since G acts transitively on extensions of v, the valuation on
Kh extends uniquely to the algebraic closure, hence is Henselian by 1.2.19.

If L is a Henselian field containing K, let L1 be the algebraic closure of K
in L. Clearly, L1 is Henselian. Again since the action of G is transitive, we
may embed L1 in the algebraic closure so that v1 restricts to the valuation on
L1. Since L1 is Henselian, this is the unique extension, so the Galois group
of L1 is a subgroup of Gd. Hence L1 extends Kh. □

Definition 1.2.22. Given a valued field K, the field Kh from Prop. 1.2.21 is
called the Henselisation of K Henselisation

The final ingredient we require is the existence of sufficiently many roots,
that can be detected via the residue field and the value group.

Lemma 1.2.23. Let K, Γ , v be a p-adic field. For any element a ∈ K of valuation 0
and any n ∈ N ⊆ Γ there ism ∈ Z ⊆ K, prime to p, with v(ma− 1) ⩾ n.

In particular, if K is Henselian, for any k > 0 there ism as above such thatma
has an k-th root.
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Proof. Since K is p-adic, we have v(ma − 1) ⩾ n if and only if ma = 1 in
O/Mn = Z/pn. Hence we need to show this forQwith the p-adic valuation,
where it is clear.

For the second part, set n = 2v(k) + 1, and use the previous statement
together with Lemma 1.2.18. □

We are now in position to prove quantifier elimination.

Proof of Theorem 1.2.17. Once again we use 1.2.7, where we assume, by Re-
mark 1.2.8, that M2 is saturated. A is now a valued field, with residue
field Fp and value group a Z-group. SinceM1 andM2 are Henselian, they
contain (canonically) the Henselisation of A, so we may assume that A is
Henselian.

We now claim that we may further assume that v(A) is pure in Γ(A) (and
therefore in Γ(Mi)), i.e., if Dn(v(a)) holds for some a ∈ A, then there is
b ∈ A with nv(b) = v(a). Let n be minimal for which this fails.

In fact, we claim that for some integer i, prime to p, ia has an n-th root
in M1. When v(a) = 0, this is Lemma 1.2.23. For general a, we may find
b1 ∈ M1 with v(b1) =

v(a)
n

, so that v( a
b1

n ) = 0. By the previous case,
bn = i a

b1
n for some b ∈M1 and i, so that (bb1)n = ia.

Let i be as above, and let b ∈M1 satisfy bn = ia. We claim that xn − ia

is the minimal polynomial of b over A. Otherwise, let F(x) =
∑k

j=0 ajx
j be

the minimal polynomial. Then for some l ̸= m ⩽ k < n we have v(albl) =
v(amb

m), i.e., (l−m)v(b) = v( al

am
) ∈ v(A), contradicting the minimality of

n.
It now follows that any extension of A inside M2 by an n-th root of ia is

isomorphic as a field to A(b). Such a root indeed exists inM2, since ia is in
Rn(A). The extension is also isomorphic as a valued field, by 1.2.19.

To show the claim, it remains to show that for all k > 1, an element of
A(b) has a k-th root in M1 if and only if it has one in M2. Such an element
b1 has the form

∑n−1
i=0 aib

i for ai ∈ A, and by a calculation as above, it has
valuation v(aibi) for 0 ⩽ i < n. Again by Lemma 1.2.23, there is an integer
m (prime to p) such that mb1 has a k-th root if and only if aibi does (note
that m and i depend only on residues and valuations in A(b) and not on
the containing modelsMi). Raising this term to the power n, we end up in
A, where divisibility is determined by the structure A.

This concludes the proof that we may extend A to a sub-structure A(b),
in which v(b) =

v(a)
n

. Applying this procedure repeatedly, we obtain the
purity claim.

Given the purity, any b ∈M1 not in A is transcendental over A by 1.2.20.
Assume that γ1 = v(b) ̸∈ v(A). We may find γ2 ∈ Γ(M2) having the same
type over v(A) as γ1 (by quantifier elimination in Z-groups). Since v(A) is
pure in each of the groups, the valuation of every rational function in b is
determined by setting v(b) = γ2 in M2. These conditions do not interact
with the root conditions, and therefore they can also be satisfied.
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Finally, assume that v(b) ∈ v(A). Dividing by a suitable element ofA, we
may assume v(b) = 0. Since b is transcendental, there are no polynomial
equations to satisfy, and other kinds of formulas can be realised by approxi-
mating bwith sufficient precision, which can be done by Lemma 1.2.23. □

Corollary 1.2.24. The theory of p-adically closed fields is the model completion of
the theory of p-adic fields. In particular, it is the complete theory of Qp.

We recall that a theory T is the model completion of a universal theory T0 model completion

if any model of T0 extends to a model of T, and T eliminates quantifiers.

Proof. If K is a p-adic field, its Henselisation has the same residue field and
value group, so is a p-adically closed field into which K embeds.

By quantifier elimination, every formula, and thus every sentence is equiv-
alent to a quantifier free one. Since every model of the theory contains the
Henselisation of Q with the p-adic valuation, every such sentence is de-
cided. Hence the theory is complete, and we have already seen that Qp is a
model. □

1.3. Definable subsets of p-adically closed fields. The quantifier elimina-
tion result allows us to start analysing the collection of definable sets in pow-
ers of K (“definable” will now mean: with parameters from K). We recall
that an arbitrary valuation on a field K induces a topology on K, generated
by the open balls Oγ(a) = {x ∈ K : |x| < γ} for a ∈ K and γ ∈ Γ . We take
the product topology on powers of K. By explicit inspection, it is easy to
see, then, that and arbitrary definable subset X is a finite union of subsets
Xi, each an intersection of an open subset and a Zariski-closed subset (i.e.,
a subset given by a finite number of polynomial equations). In particular,
we have

Corollary 1.3.1. Let A be a sub-structure of a modelM of T.
(1) The (model theoretic) algebraic closure of A consists of the field theoretic

algebraic closure in the field sort, and the divisible hull of Γ(A) in the value
group.

(2) If Γ(A) is contained in the definable closure of v(A), then the algebraic
closure of A is an elementary sub-model of T.

(3) The definable closure ofA coincides with the algebraic closure. In particular,
if γ ∈ Γ is definable over VF(A), then γ =

v(a)
m

for some m ∈ N and
a ∈ VF(A)

Proof. (1) A finite A-definable subset of VF is necessarily a subset of
a proper Zariski-closed subset of VF, hence contained in the field
theoretic (relative) algebraic closure.

(2) Let B be the algebraic closure. Then B is Henselian, and its value
group is pure in the value group ofM. Also, it is closed under roots,
so the Ri are interpreted correctly. Hence it is a submodel, which is
elementary by quantifier elimination.
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(3) Let B be the algebraic closure of A, and let C be the fixed subfield of
B under Aut(B/A). Then C contains the Henselisation of A (since
B is Henselian, and the Henselisation embeds uniquely in it), hence
is itself Henselian. Hence, by Prop. 1.2.20, it suffices to prove that
v(VF(C)) = v(VF(B)), and for that, it suffices to prove that C is
closed under roots.

Assume that bn = a ∈ C for some b ∈ B. By Lemma 1.2.23, for
any k > 0 there ism ∈ Z such thatmb has a k-th root. If b1 satisfies
the same type overC, it follows in particular thatmb1 has a k-th root
as well, hence so does mb

mb1
= b

b1
, a root of 1. Thus we obtain a root

of 1 that has a k-th root for all k. The following lemma implies that
the root of unity is equal to 1, i.e., that b = b1. Thus b is definable
over C.

□
Lemma 1.3.2. A model of T contains only a finite number of roots of unity

Proof. Exercise, using Hensel’s Lemma □
Our next goal is to analyse in detail the definable subsets VF (i.e., sets

definable with one free VF-variable). This is the main technical ingredient
in Denef’s computation of the integrals.

Proposition 1.3.3. Any definable subset of VFn is a boolean combination of sets
of the form Rn(fi(x̄)), where fi are polynomials. Any definable subset of VF is a
disjoint union of a finite set, and sets defined by formulas of the form

∧
iRn(fi(x))

(where n is independent of i).

Proof. By quantifier elimination, it suffices to consider atomic formulas. Each
atomic formula not of the required form is equivalent to a polynomial equa-
tion, or to λ(v(f1), . . . , v(fn)) > 0, where λ : Γn −→ Γ is a linear function
λ(γ1, . . . ,γn) =

∑
miγi + γ with mi ∈ Q and γ ∈ Γ . A polynomial equa-

tion g(x) = 0 is equivalent to ¬R2(g
2(x)), so we need only to deal with the

second kind.
By clearing denominators, we may assume all mi ∈ Z. We may also

multiply by a sufficiently large integer, and assume that γ = v(a) for some
constant a. We then have that the formulas is equivalent to v(F) > v(G) for
suitable polynomials F and G.

We now claim that the relation v(x) > v(y) is equivalent to R2(px
2 + y2)

if p > 2 (if p = 2, replace p by p3). Indeed, if v(x) > v(y), then v(px2) =
2v(x)−1 > 2v(y) = v(y2), hence v(px2+y2) = v(y2). It follows that px2+y2
has a square root if and only if 1 + px2

y2 does, which it does by Hensel’s
Lemma. Conversely, if v(x) ⩽ v(y), then v(px2 + y2) = v(px2) = 2v(x) − 1,
hence it cannot have a square root.

To prove the second part, we note that ¬Rn(x) is equivalent to the (dis-
joint) disjunction of Rn(dix), where di are integer representative for the el-
ements ofQp

x/Qp
xn. Also, for eachm, Rk(x) is equivalent to a conjunction
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of formulas Rkm(dix
m) for suitable elements di (namely, di are equivalent,

in Qp
x/Qp

xm, to certain roots of unity). □
We recall that the ball with centre c, of (valuative) radius γ, is the defin-

able set Bγ(c) = {x ∈ VF : v(x − c) ⩾ γ} (this is, more precisely, a closed
ball, but since the value group is discrete, any open ball is closed as well).
We note that any element of Bγ(c) is a centre for it. The radius, however, is
uniquely determined.

A Swiss cheese is a ball with a finite number of proper sub-balls removed. Swiss cheese

Any centre of the containing ball is also called a centre of the Swiss cheese
(thus, a centre need not belong to the swiss cheese). We remark that the
presentation as a difference of balls is a property if the formula, rather than
the set it defines: a definable set can be a Swiss cheese in many different
ways.
Proposition 1.3.4. Let K be a p-adically closed field. For any polynomial f(t) ∈
K[t] and natural number n > 0, there is a partition of VF into finitely many swiss
cheeses A, such that on A we have for some centre c of A, f(t) = hu(t)n(t− c)e,
with |u(t)| = 1 for all t, and h independent of t.
Remark 1.3.5. The statement clearly implies that u is definable as well □

To prove the statement, we will pass to a finite extension of K. If E is such
an extension, then we may obviously write E = V + K as a vector space,
where V is a K-subspace of E, with V ∩K = 0. We would like to obtain such
a decomposition as valued vector spaces:
Lemma 1.3.6. Assume that E is a finite extension of a Henselian valued field K of
characteristic 0, such that the residue field extension is separable. Then there is a K-
vector space decomposition E = K+V of E, such that v(x+y) = min(v(x), v(y))
for x ∈ V and y ∈ K.

For the proof of the lemma, we recall that the trace Tr(e) of an element
e ∈ E is its trace when viewed as the linear map from E to itself given by
multiplication by e. When E is an unramified extension of K, the (residue
field) trace of an element ē, for e ∈ OE, conincides with the residue ¯Tr(e).
Since the residue field extension is separable, the trace map is surjective
there, and we may find an element ā ∈ Ē with trace 1. Lifting it to an
element a ∈ E, we thus obtain an element with Tr(a) = 1 and v(a) = 0
(if the degree N of the extension is not divisible by p, we may simply take
a = 1

N
).

Proof of Lemma 1.3.6. Since assumptions remain valid for intermediate ex-
tensions, we may assume that E is either unramified (no value group ex-
tension) or totally ramified (no residue field extension). The second case is
easy, and is left as an exercise. We thus assume that E is unramified.

In this case, let a be as above, and let π : E −→ E be given by π(x) = Tr(ax).
Clearly, π takes values in K and is the identity on K, so setting V = ker(π),
we have a direct sum decomposition in which π is the projection to K.
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To prove the condition in the lemma, we may assume v(x) = v(y) = 0,
and therefore that y = 1 and Tr(ax) = 0, and we need to show that the
residue of x is not 1. If it was 1, we would have x = 1+uwith v(u) > 0, and
therefore Tr(ax) = Tr(a) + Tr(au). Since

v(Tr(au)) ⩾ v(au) = v(a) + v(u) > v(a) = 0

we have v(Tr(ax)) = v(Tr(a)) = 0, contradicting that Tr(ax) = 0. □

Proof of Prop. 1.3.4. We may assume that f is irreducible. Write f(t) = (t −
s1) . . . (t − sd) with si in the splitting field E of f. Let E = V + K as in
Lemma 1.3.6, and let ci ∈ K be the projection of si to K. Then for all x ∈ K
we have v(x+ si − ci) = min(v(x),γi), where γi = v(si − ci). Let Bi = {t ∈
VF : v(t−ci) ⩾ γi} be the (closed) ball of radius γi around ci. For elements
t ∈ Kwe have

v(t−si) = v(t−ci+ci−si) = min(v(t−ci),γi) =

{
γi t ∈ Bi,

v(t− ci) t /∈ Bi.
(9)

For I ⊆ {1, . . . ,d}, let AI =
∩

i∈I Bi \
∪

i/∈I Bi and γI =
∑

i∈I γi. Clearly, the
AI form a partition of VF, and each AI is a swiss cheese. On AI we have

v(f(t)) =

d∑
i=1

v(t− si) = γI + v(
∏
i/∈I

(t− ci)) (10)

Let hI be an element of K with valuation γI, and let fI(t) =
∏

i/∈I(t − ci).
Then on AI, f and hIfI have the same valuation, hence their quotient uI(t)
has valuation 0 there. By modifying hI and partitioning further (by smaller
balls), we may assume that uI(t) has residue 1 in sufficiently fine quotient
Zp/p

m, so that uI is an n-th power. □

With some more detailed analysis, we may obtain the following finer ver-
sion: Swiss cheeses are replaced by annuli, and the partition can be done
simultaneously for several polynomials. We omit the proof, cf. [6, Theo-
rem 7.3].

Proposition 1.3.7. Given a finite number of polynomials fi(t) and a natural num-
ber n, there is a finite partition of VF into annuli A = A(cj), such that the restric-
tion of each fi to A has the form hiui(t)

n(t− cj)
ei for some constant hi, natural

number ei, and unit-valued definable function ui.

We call a definable subset of VF a simple set if it is finite, or is the intersec-simple set

tion of an annulus centred at cwith a set of the form Rn(d(t− c)) for some
integer d.

Proposition 1.3.8. Let X ⊆ VF be a definable set (in one variable). Then X is
a finite disjoint union of simple sets. If r : X −→ Γ is definable, the pieces can be
chosen so that r has the form r(t) = qv(t−c)+γ, where q is rational, c is a centre,
and γ ∈ Γ . each.
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Proof. By 1.3.3, X is a disjoint union of definable sets, each of the form∧
i

Rn(fi(x))∧
∧
j

gj(x) = 0 (11)

for a fixed n, where fi and gj are polynomials over VF(A). Hence, we may
assume that X itself is of this form. We may further assume that no gj ap-
pears, since the set defined by them is finite (hence simple). Also, by 1.3.1,
we may assume that r(t) = qv(

r1(t)
r2(t)

), where ri are polynomials, and q is
rational.

According to 1.3.7, there is a partition of VF to a finite number of annuli
Aα,β(c), on which every fi(t) and ri has the form hiui(t)

n(t−c)ei for some
natural ei. We may therefore restrict attention to one such annulus. Since
we are interested in the class of this expression in VFx/VFxn, we may ig-
nore ui(t), and assume that hi are natural numbers. The formula is then
equivalent to a conjunction of formulas of the form Rn(di(t − c)), where
di ∈ N (namely, di represents the inverse of the ei-th root the class of hi in
the above group). These formulas are clearly inconsistent (or equal), so in
fact, only one appears. □

1.4. Constructible functions. From now on, we work in the model Qp. We
identify a definable set in the theory of p-adically closed fields with the
set of Qp-points it determines. In particular, Γ = Γ(Qp) = Z. Our goal
is to define a class of functions, the constructible functions, which is closed
under integration and includes the functions we are interested in. We begin
this by considering functions on the value group only.

Definition 1.4.1. (1) A subset X ⊆ Γn is bounded if for some a ∈ Γ we bounded

have αi ⩾ a for all (α1, . . . ,αn) ∈ X.
(2) The support of a function f : Γn −→ Q is the set of all x with f(x) ̸= 0. support

We say that f is compactly supported if the support of f is bounded. compactly supported

(3) For f = f(x̄, t) : Γn+1 −→ Q compactly supported, we define Σ(f) =
Σt(f) : Γ

n −→ Q via Σt(f)(x) =
∑

t∈Γ f(x, t)p
−t (in general, this need

not converge)

Remark 1.4.2. These definitions make more sense when using the multiplica-
tive version of Γ . In particular, the summation defined above corresponds
to integrating a function along the t-fibres using the usual Lebesgue mea-
sure. □

Let Y be a bounded definable subset of Γm, and let r : Y −→ Γn be a
bounded function with finite fibres. To this datum, we may assign a func-
tion FY,r : Γn −→ Q, given by FY,r(x) = #r−1(x) (of course, this function
actually takes values in N, but we view them as functions into Q). We some-
times omit r and write the fibre r−1(x) as Yx.

Definition 1.4.3. A function of the form FY,r, where r : Y −→ Γn is bounded
definable is called basic constructible. The group C(Γn) of (compactly sup- basic constructible
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ported) constructible functions on Γn is the (additive) group of functions constructible functions

from Γn to Q generated by functions of the form Σ(F), where F is basic con-
structible (on Γn+1).

More generally, we denote by C(X), for X ⊆ Γn, the subgroup of C(Γn)
consisting of functions supported on X. We will see below that the defini-
tion makes sense, i.e., that the series defining Σ(F) converges.

Proposition 1.4.4. (1) If F is constructible on Γn, and g : Γm −→ Γn is
bounded definable, then F ◦ g is constructible on Γm. In particular, any
compactly supported definable function is constructible

(2) Any basic constructible function is constructible
(3) If F is a constructible function on Γn+1, then Σ(F) is constructible (on Γn)
(4) The product of constructible functions is constructible

We remark that we will describe below the definable functions in Γ, and
in particular those which are bounded.

Proof. (1) This easily reduces to the analogous statement for basic con-
structible, F = FY,r. Let

Z = g∗(Y) = {(x,y) ∈ Γm ×Y : g(x) = r(y)} (12)

with s : Z −→ Γm the projection to Γm. Then for all x ∈ Γm, s−1(x) =
r−1(g(x)), from which the statement follows. The second part fol-
lows since the identity function on each bounded set is easily seen
to be constructible.

(2) Given r : Y −→ Γn, let s : Y −→ Γn+1 be given by s(y) = (r(y), 0).
Clearly, FY,r = Σ(FY,s).

(3) It suffices to prove this for generators. Let r = (rX, r1, r2) : Y −→
X×Γ×Γ, and define s : Y −→ X×Γ by s(y) = (rX(y), r1(y)+ r2(y)).
We note that s−1(x, k) =

⨿
i+j=k r

−1(x, i, j), and this set is finite,
since for each k, only finitely many such i, j determine a non-empty
fibre. We therefore have

Σ(Σ(FY,r))(x) = Σi(Σ(FY,r)(x, i)p
−i) =

= ΣiΣj#r
−1(x, i, j)p−j−i = Σkp

−kΣi+j=k#r
−1(x, i, j) =

= Σkp
−k#s−1(x, k) = Σ(FY,s)(x)

(13)

(4) Again it suffices to prove this for generators. If F,G : X × Γ −→ Q
are two compactly supported functions, and H : X × Γ × Γ −→ Q is
defined byH(x, i, j) = F(x, i)G(x, j), it is easy to see that Σ(F)Σ(G) =
Σ(Σ(H)). Therefore, it follows from the previous part that it suffices
to show that if F = FY,r and G = FZ,s are basic constructible, then
so is H. Letting W = Y ×X Z = {(y, z) ∈ Y × Z : rX(y) = sX(z)}
(where rX is the X component of r), and t : W −→ X× Γ× Γ be given
t(y, z) = (rX(y), rΓ(y), sΓ(z)), one easily sees that H = FW,t. □
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We now extend the definition to general definable sets in the theory of
Qp.

Definition 1.4.5. LetX be a definable set in the theory ofQp. The spaceC(X)
of constructible functions on X is the Q-vector space generated by functions constructible functions

of the form F ◦α, where α : X −→ Γn is a definable function, and F : Γn −→ Q
is constructible (in the previous sense)

We note that by 1.4.4, this definition coincides with the previous one
when X ⊆ Γm. We also note that if X and Y are disjoint, then C(X ∪ Y) =
C(X)× C(Y), i.e., a piecewise-constructible function is constructible.

The following is a version of Denef’s theorem.

Theorem 1.4.6. Let Z ⊆ X × Y be a bounded definable set in the theory of Qp,
and let F be a constructible function on Z. Then the function

G : Y −→ Q, G(y) =

∫
Zy

F(x,y)dx (14)

is constructible

We remark that Z in this theorem may have components in Γ as well as
VF, in which case we interpret

∫
as Σ, in the sense of Def. 1.4.1.

Proof. By definition, there is a constructible function G : Γm −→ Q, and a
definable function α : X×Y −→ Γm such that F = G ◦ α. By induction (and
Fubini), it suffices to prove this when X = VF or X = Γ.

Assume X = VF. By 1.3.8, we may partition Zy into simple (y-definable)
subsets W(c(y)), on which we have αi(x,y) = eiv(x − c(y)) + di(y) for
rational ei and integer di(y). The number of such pieces and the numbers
ei depend on y, but (by compactness) are constant on each of the pieces of
a finite definable partition of Y. Since a piecewise-constructible function is
constructible, we may restrict attention to one of these pieces. Since integra-
tion is additive on disjoint unions, we may therefore assume that Zy is just
one such piece. Furthermore, since integration is translation-invariant, we
may assume that c = 0, and again by additivity, we may assume that the
annulus that occurs in W is, in fact, a ball. Also, we may assume di = 0 and
ei = 1 by making a definable change of variable in G. We are thus facing
the integral∫

|x|⩽p−γ(y),Rn(bx)
G(v(x)) =

∑
i⩾γ(y)

µ({x : v(x) = i,Rn(bx)})G(i) (15)

We now recall that for any naturaln and l, the set Rn,l = v
−1(l)∩Rn is non-

empty precisely if l is divisible by n, and given such n, l, and z ∈ Rn,l, the
map x 7→ zx determines a bijection from Rn,0 to Rn,l, scaling the measure
by p−l. Thus, setting r = µ(Rn,0) (a rational number), we obtain that the
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integral above is given by

r(1−
1

p
)
∑
i

p−iH(i,γ(y)) (16)

where

H(i, j) =

{
G(i) i ⩾ j,Dn(i),

0 otherwise.
(17)

Clearly, H is constructible, and our integral has the form Σ(H)(γ(y)). By
Prop. 1.4.4, Σ(H) is constructible, so by definition, the integral is a con-
structible function as well. The case X = Γ follows again from 1.4.4. □

1.5. Towards motivic integration. The goal of this subsection is to explain
the transition from the classical p-adic integrals that occur in the present
section, to the computation of Grothendieck semi-rings that occurs in the
rest of these notes, along with some motivation and history. We follow (ini-
tially) the notes [16]. Some more detailed overviews (of the flavours that we
will not discuss further) appear in [6] and [19].

1.5.1. The topological zeta function. Going back to the situation in the begin-
ning of the section, we mentioned that the Igusa zeta function associated
to a polynomial F can be computed in terms of an embedded resolution of
singularities of the variety X ⊆ An defined by F. This expression takes the
following form: The resolution Y is a certain map π : Y −→ An, such that
the irreducible components {Ei : i ∈ I} of the inverse image π−1(X) of X
are smooth. To each component Ei one associates certain integers (Ni,νi)
related to the way Ei is embedded in Y (namely, Ni is the multiplicity of
F ◦ π on Ei, and νi is the multiplicity of the relative sheaf of differentials
ΩY/An over Ei). Then using the change of variable formula for integration,
and a computation similar to the one in 1.1.2, Denef showed that (with cer-
tain assumptions on the reduction of the resolution) the following formula
holds:

ZF(s) = q
−n

∑
J⊆I

#EJ(k)
∏
j∈J

(q− 1)q−Njs−νj

1− q−Njs−νj
(18){E:zeta}

where k is the residue field (of cardinality q), and for a subset J of I, EJ =
∩j∈JEj \ ∪j/∈JEj.

This formula can be viewed as an aid for computing the zeta function.
However, it can also be viewed as providing geometric information about
X: the resolution of X, and in particular the number of components Ei, and
the numbers Ni and νi are not unique. However, the expression on the
right of (18) which appears to depend on them, is in fact independent, and
depends only on F (since the left hand side does not depend on the resolu-
tion). Furthermore, the expression on the right is uniform: It is expressed
in terms of the number of points in certain varieties (note that q = #A1(k)).
Thus the situation is that we have two equal quantities associated to F: the
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left hand side, which is independent of the resolution, and the right hand
side, which is almost independent of the valued field.

Since the coefficients of F are integers, we may also view F as a polyno-
mial over C. In this case, X(C) is a complex analytic space, and we may be
interested in its topological properties. In particular, one may ask whether
it is possible to write a topological zeta function, similar to the one on the
right hand side of (18), which will not depend on the resolution. Evaluat-
ing this expression over C poses the problem that the number of complex
points of a variety is often infinite, but Denef and Loeser realised that the
correct heuristic here is to “take the limit as q = pr goes to 1”1, to obtain the
following result (using the terminology above).

Theorem 1.5.2 ([5]). The topological zeta function Ztop
F of F, defined as

Z
top
F (s) =

∑
J⊆I

χ(EJ(C))∏
j∈J(Njs+ νj)

(19)

where χ(Y) is the compactly supported Euler characteristic, does not depend on the
resolution

While the heuristic leads to the definition of the topological zeta function,
it does not provide a proof. Following the ideas from the p-adic situation,
one would hope to express the function as an integral, perhaps over C[[t]]n,
so that the dependence on the resolution disappears. However, C[[t]] in not
locally compact, and so no classically defined integration theory exists. In
an unpublished note, Kontsevich suggested that there should exist a gener-
alised integration theory, where the integrals take values in a suitably de-
fined Grothendieck ring of varieties. This idea was implemented by Denef
and Loeser, under the name “motivic integration”. Their theory in particu-
lar provides a proof of the above theorem (though this was not the original
proof).

1.5.3. The Grothendieck ring of varieties. Above, we considered two opera-
tions i on varieties X defined over Z: Counting points in a finite field, and
computing the Euler characteristic of the space of complex points. The two
operations have the following in common: They are invariant under (alge-
braic) isomorphisms, they are additive: i(X∪Y) = i(X)+i(Y)whenX andY
are disjoint, and they are multiplicative: i(X×Y) = i(X)i(Y). An operation
satisfying these properties is called an additive invariant (multiplicativity is additive invariant

sometimes ignored).
It makes sense to consider additive invariants on varieties over a field

k taking values in an arbitrary commutative ring (in fact, semi-ring), and
among these, there is a universal one X 7→ [X] ∈ K(Vark), where K(Vark), K(Vark)

the Grothendieck ring of varieties is defined as the ring generated freely by Grothendieck ring of vari-
etiesthe isomorphism classes of varieties over k, subject to the additivity and

1We will slightly expand on this heuristic in §4.5
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multiplicativity relations above. We note that though this invariant is very
easy to define, it is very hard to understand. Indeed, defining an additive
invariant on varieties is equivalent to defining a ring homomorphism from
K(Vark), so understanding this ring amounts to understanding all additive
invariants of algebraic varieties.

As mentioned above, both the classical and the topological zeta function
can be expressed completely expressed in terms of additive invariants. The
idea is thus to replace values of particular additive invariants, by the uni-
versal one, and consider integrals that take values in the Grothendieck ring
of varieties. Since the number of points of A1 occurs inverted in the classi-
cal zeta function, one in fact expects the class L of A1 to be inverted, i.e., the
candidate for values is K(Vark)[L−1] (this is not visible in the topological
version since the Euler characteristic of A1 is 1).

1.5.4. Geometric motivic integration. Having discussed the range of the mo-
tivic measure, we now briefly discuss the domain. We recall that the origi-
nal plan was to integrate subsets of An(C((t))), where C((t)) is the field of
Laurent series. This is essentially what is done, but to describe the “mea-
surable” subsets, a more algebraic description is required.

Let k be a field. The arc space L(X) of a (quasi-projective) scheme X overarc space

k is determined by the property that L(X)(A) = X(A[[t]]) (functorially) for
algebras A over k. The geometric motivic measure is defined on certain
subsets of L(X) called cylinders, and takes values in K(Var)k[L−1] (in fact,
the class of measurable sets is enlarged by taking a certain completion M

of this ring). We omit the details, but mention that L(X) itself is a cylinder,
and if X is smooth of pure dimension d, then µ(L(X)) = [X]L−d.

Since the measure is defined on subsets of L(X), and takes values in M,
we expect to be able to integrate certain functions on L(X) that take values
inM. By analogy with the p-adic case, one defines, for functionsα : L(X) −→
N, ∫

L(X)
L−α =

∑
i∈N

µ(α−1(i))L−i (20)

assuming that the right hand side makes sense as an element of M (in par-
ticular, each α−1(i) should be measurable; the completion on M is such that
the integral exists for “nice” functions α).

In particular, given a polynomial F as before, setting α(x) = v(F(x)) for
x ∈ X(A[[t]]) = L(X)(A) (note that the value is independent of A, and is
therefore genuinely a function on the arc space), and replacing L by L−s,
one obtains the motivic analogue Zmot

F of the zeta function. A motivic ana-
logue of the change of variables formula for integration allowed Denef and
Loeser to repeat the calculation of the classical zeta function, to obtain the
formula

Zmot
F (s) = L−n

∑
J⊆I

[EJ]
∏
j∈J

(L− 1)L−νj−sNj

1− Lνj−sNj
(21)
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where notation is as above. The formula for the classical zeta function oc-
curs as as specialisation of this formula, and specialising to the Euler char-
acteristic one obtains the topological zeta function, proving the theorem of
Denef and Loeser cited above.

1.5.5. From Denef–Loeser to Hrushovski–Kazhdan. Geometric motivic integra-
tion can be viewed as a uniformity result: the expression for ap-adic integral
depends on the residue field in a way that can be expressed uniformly via
varieties over the residue field (and the expressions continue to make sense
when the residue field is not finite). In other words, the expression remains
the same when passing to unramified extensions of the valued field. How-
ever, the uniformity does not extend to ramified extensions. One advantage
of the theory of [12] is that expressions are obtained which are uniformly
valid for all (0-characteristic) valued fields.

The value group Z of a local field occurs in the integration theory as the
index set for summation: As we saw in the p-adic case, an integral is given
as an infinite sum over the integer tuples that lie in a definable subset of Γ.
The idea is that just like the set of points (in the residue field) of a variety
is replaced by the class of the variety, the set of indices should be replaced
by the definable set in Γ that determines it. In other words, we expect to
have a motivic measure that takes value in Grothendieck ring that combines
varieties and definable sets in the value group Γ.

Another modification occurs in the domain of the measure. Rather than
viewing measurable sets as (limits of) objects from algebraic geometry, the
“measurable sets” are now definable sets in the theory ACVF0,0 of alge-
braically closed fields of equal characteristic 0. Since a measure is itself a
kind of an additive invariant, we are led to consider Grothendieck (semi-)
rings of theories.

1.5.6. Grothendieck rings of first order theories. Even if we don’t know how to
define a measure on definable sets, we know some of its properties: Since it
should be analogous to Haar measure, it should be invariant under transla-
tions, and it should be additive with respect to disjoint unions, and multi-
plicative on Cartesian products (Fubini). These properties can be formalised
via the Grothendieck ring of definable sets. Grothendieck ring of defin-

able setsThis makes sense for any first order theory T. Given a sub-category C of
the category of definable sets and definable maps between them, one de-
fines K+(C), the Grothendieck semi-ring of C, to be the semi-ring generated
freely by the isomorphism classes in C, subject to the relations [X∩Y]+[X∪
Y] = [X]+[Y] and [X×Y] = [X] · [Y] (the Grothendieck ring is defined anal-
ogously, but contains less information, as explained in 3.4. Working with
semi-rings is another advantage of this flavour).

With this terminology, the task of defining a “measure” on the objects of
C, for which the morphisms in C are “measure preserving” becomes equiv-
alent to defining a homomorphism on K+(C). There are several instances
of this in [12], where T is ACVF0,0. As explained above, the measure takes
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values in a combination of the Grothendieck semi-rings of varieties and of
the value group, both of which are sorts in ACVF0,0. Thus, the problem
becomes about computing the relation between Grothendieck semi-rings
of different parts of ACVF0,0. The precise statements and (some of) their
proofs are explained in the following sections.

2. Definable sets in ACVF

From now on, we will be concerned with the theory of algebraically closed
valued fields, as defined below. We will state some key results, and provide
some proofs from [12]. We follow [12] rather closely: all results and their
proofs are from there, unless stated otherwise, though some of the more
fundamental results there originate from [11].

The word “definable” will mean from now on: definable without pa-
rameters

Definition 2.0.1. (1) The signature of valued fields consists of the follow-signature of valued fields

ing data
(a) Three sorts VF, RV and Γ
(b) The signature of rings on VF, the signature of ordered abelian

groups on Γ, and the signature of rings on RV
(c) Function symbols rv : VF −→ RV and vRV : RV −→ Γ ∪ {∞}

We will write RVx = RV \ {0}
(2) The theory of valued fields, VF, is the (universal) theory in the abovetheory of valued fields

signature, axiomatised by:
(a) Γ is an ordered abelian group, (RVx, ·) is an abelian group, vRV(0) =∞, and vRV restricts to a group homomorphism vRV : (RVx, ·) −→

Γ.
(b) VF is a field, rv restricted to VFx is a homomorphism of mul-

tiplicative groups, and v := vRV ◦ rv is a valuation, such that
v(x) > 0 if and only if rv(1+ x) = 1.

(c) +RV is a partially defined operation, so that rv(x+y) = rv(x) +
rv(y) whenever the latter is defined

(3) The theoryACVF of algebraically closed fields is the extension ofVF byalgebraically closed fields

the axioms that VF is algebraically closed, rv and vRV are surjective,
and Γ is infinite.

For γ ∈ Γ, we denote by RVγ the (γ-) definable subset vRV(x) = γ in RV.

Exercise 2.0.2. Show that the signature induces on RV0 the structure of the
residue field, with 0 removed, and the rv restricts to the residue map from
the invertible elements of the valuation ring to RV0.

Hence, we have an exact sequence

1 −→ kx −→ RVx vRV−−→ Γ (22)
(and the map on the right is surjective for models ofACVF). We note that the
sequence splits, since for models of ACVF, the residue field is algebraically
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closed, hence kx is divisible. However, the splitting is not canonical (and no
definable splitting exists, as we will see later).

Exercise 2.0.3. Let K be a valued field in the above signature, and let s, t ∈
RV(K). Show:

(1) s+ t is well defined if s ̸= −t
(2) If vRV(s) > vRV(t), then s+ t = t
(3) If vRV(s) = vRV(t) and s ̸= − t, then vRV(s+ t) = vRV(s)

2.1. Elimination of quantifiers and some consequences.

Theorem 2.1.1 (Robinson, [22]). The theory ACVF eliminates quantifiers. Its
completionsACVFp,q are determined by specifying the characteristic p and residue
characteristic q. It is the model completion of VF.

Proof. We will use 1.2.7. Thus, we are given algebraically closed valued
fields L1 and L2, with a common substructure L0. As in Remark 1.2.8, we
assume that we are given an element a ∈ L1, and we are looking for an
element satisfying its quantifier-free type in L2, which we assume to be sat-
urated. Furthermore, we note the following:

(1) ACVF implies that Γ is a divisible ordered abelian group, hence
it admits quantifier-elimination. Therefore, we may assume that
Γ(L0) = Γ(L1) = Γ(L2) (as ordered abelian groups).

(2) Likewise, ACVF implies that the residue field is algebraically closed,
hence eliminates quantifiers. Thus, we may assume that RV0(L1) =
RV0(L2) = RV0(L0). It follows (e.g., by the splitting mentioned
above), that we may assume RV(L1) = RV(L2) = RV(L0).

(3) VF(L0) is a field. Furthermore, by 1.2.21, we may pass to the henseli-
sation of L0, and assume that L0 is Henselian.

Thus we have a ∈ VF(L1), with VF(L0) Henselian (from now on we write
Li instead of VF(Li)). Assume first that a is algebraic over L0. Then, since
L2 is algebraically closed, we may find b ∈ L2 with L0(a) = L0(b) as fields.
By 1.2.19, they are also isomorphic as valued fields.

Extending successively, we may assume that L0 is algebraically closed.
Let us now consider the collection of formulas

Σ = {rv(x− c) = rv(a− c) : c ∈ VF(L0)} (23)
We claim that Σ determines the quantifier-free type of a over L0. Indeed, a
general atomic formula has the form ϕ(rv(p1(x)), . . . , rv(pk(x))), with ϕ a
formula over L0 in the RV sort, and pi are polynomials over VF(L0). Hence
its truth value is determined once we know rv(pi(x)). But L0 is algebraically
closed, and rv is a multiplicative homomorphism, so this reduces to linear
factors.

We are thus reduced to realising Σ in L2. By saturation, it suffices to re-
alise a finite subset, rv(x − ci) = rv(a − ci) =: ri. By Exercise 2.0.3, if
x,y ∈ VF are such that v(x) > v(y), then rv(y) = rv(y − x). Applying this
remark to x = a − ci and y = a − cj, it follows that it suffices to satisfy
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those equations rv(x − ci) = ri for which vRV(ri) is maximal, say γ. Fur-
thermore, if ri ̸= rj, then their difference exists, as an element of RVγ, and
ri − rj = rv(a − ci) − rv(a − cj) = rv(cj − ci). Thus, if rv(x − ci) = ri, we
automatically have rv(x − cj) = rj. It follows that we may assume that all
ri are equal, say to r. Similar arguments show that v(ci − cj) > vRV(r) for
all i, j, and therefore each such equation implies all the others. Thus, we are
reduced to solving rv(x− c) = r, which can be done since rv is surjective.

This completes the proof of quantifier-elimination. The other two state-
ments follow, since for any (consistent) choice of characteristics there is a
prime model, and the valuation on any field extends to the algebraic clo-
sure (the prime models are Qa

q in the mixed characteristic case, and K(t)a
with the t-adic valuation, where K is the prime field, in the equal character-
istic case). □
Corollary 2.1.2. In ACVF:

(1) The structure on Γ and on k is the pure divisible ordered abelian group and
algebraically closed field, respectively.

(2) The (model theoretic) algebraic closure of a structure L0 coincides with the
field theoretic one on VF. The definable closure coincides with the Henseli-
sation. On Γ, both definable and algebraic closure are given by the divisible
hull. On RV, definable and algebraic closure are determined by the same
on Γ and k.

Proof. (1) Follows directly from quantifier elimination.
(2) We prove only for VF. The algebraic closure is clear, since the field

theoretic algebraic closure is a model. For the definable closure, as-
sume a is properly algebraic over a Henselian L0. There is, then, a
field automorphism of the algebraic closure over L0 moving a. Since
L0 is Henselian, this automorphism preserves the valuation, and by
quantifier elimination, it is then an automorphism of the full struc-
ture, so a is not definable. □

Remark 2.1.3. The last corollary describes the definable and algebraic clo-
sure inside the given sorts. For model theoretic purposes, it is often essen-
tial to know the definable and algebraic closure including imaginaries. We
will see below that ACVF does not eliminate imaginaries, and will describe
ACVFeq. Thus, our description so far is incomplete. □

Corollary 2.1.2 describes the 0-definable subsets of Γ and k. What sets are
definable if we allow parameters?

Definition 2.1.4. Let X be a definable set in a theory T. X is stably embed-
ded if any subset Y ⊆ Xn definable with parameters can be defined withstably embedded

parameters from X.

If X is stably embedded, then its properties as a standalone structure (i.e.,
of the theory of X with the induced structure) coincide with its properties
when viewed as a definable set in the theory T.
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Proposition 2.1.5. In ACVF, the definable sets Γ, RV and k are stably embedded

Proof. Follows immediately from quantifier elimination: If Y is a subset of
RVn, definable with some parameters a ∈ VF, they can only appear in a
formula via rv(a). Hence we may replace a by rv(a). □

2.2. C-minimality. Let T0 be a theory, and let T be an expansion of T0. We
say that a collection Xi of definable sets in T generates T if for any definable generates

set Y there is a map from a product of Xi onto Y. T is said to be T0-minimal T0-minimal

if there is a generating collection Xi such that any definable subset of each
Xi, even with parameters, is definable (with parameters) in T0.

Example 2.2.1. A theory T is strongly minimal if it is T0-minimal, where T0 is strongly minimal

the theory of equality (i.e., the theory of an infinite set with no additional
structure). Hence, every (parametrically) definable subset of a generating
sort is finite or co-finite. The theory ACF of algebraically closed fields in
strongly minimal (by quantifier elimination). □
Example 2.2.2. A theory is o-minimal if it is T0-minimal, where T0 is the the- o-minimal

ory of dense linear orders. Hence, a generating sort carries a definable dense
linear order, and each of its definable subsets is a finite union of intervals.
The theory DOAG of divisible ordered abelian groups, as well as of real-
closed fields are examples of such theories. □

Quantifier-elimination for ACVF shows that any definable subset of VF
is a boolean combination of balls. Thus, it is minimal for the theory axioma-
tising the behaviour of these balls, which we now define.

Definition 2.2.3. The theory UM of ultra-metric spaces is formulated in the ultra-metric spaces

language with two sorts VF and Γ∞ = Γ ∪ {∞}, a binary relation < on Γ∞,
and a function symbol v : VF2 −→ Γ∞. The axioms state:

(1) (Γ∞,<) is a dense linear order, with biggest element∞ (but no small-
est element)

(2) If v(x,y) = ∞ then x = y
(3) For each γ ∈ Γ∞, the relation v(x,y) ⩾ γ is an equivalence relation

on VF (hence so is the relation given by v(x,y) > γ, for γ <∞)
(4) Every class of v(x,y) ⩾ γ contains infinitely many classes of v(x,y) >

γ.
A theory T is C-minimal if it is UM-minimal. C-minimal

Exercise 2.2.4. Show that UM eliminates quantifiers, and is complete

Example 2.2.5. Quantifier elimination for ACVF shows that it is C-minimal
(with v(x,y) = vACVF(x − y)). More generally, this is true for expansions
of ACVF that do not add new definable subsets of VF (one variable), such
as certain expansions by analytic functions ([15]). □

As with ACVF, the theory UM does not eliminate imaginaries. We now
describe some of the imaginary sorts (of course, these sorts will also occur
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in anyC-minimal theory). The classes of v(x,y) ⩾ γ are called closed balls, of closed balls

radius γ. The collection of all closed balls forms an imaginary sort: it is the
quotientBc = VF×Γ/ ∼, where (x1,γ1) ∼ (x2,γ2) ifγ1 = γ2, and v(x1, x2) ⩾
γ1. The projection to Γ thus descends to the quotient, and determines a map
r : Bc −→ Γ∞, the radius. The fibre of this map over an element γ is the γ-
definable set Bc

γ of closed balls of radius γ (In particular, Bc∞ = VF.)
The set Bo of open balls, is likewise definable uniformly in the radius: itopen balls

is VF×Γ/ ∼, where this time ∼ is defined via the sharp inequality. An open
ball is contained in a unique closed ball of the same radius, so we obtain a
definable closure map c : Bo −→ Bc, preserving the radius. If b ∈ Bc is a
closed ball, we again denote by Bo

b the fibre of c over b, i.e., the b-definable
set of open balls of radius r(b) inside b.

Exercise 2.2.6. Show that if T is C-minimal, then Γ is o-minimal and each
fibre Bo

b is strongly minimal.

We now fix an element ∗ ∈ VF; in ACVF we will interpret ∗ as 0. The ele-
ment determines a (definable) section Γ∞ −→ Bc of the radius map, namely,
an element γ ∈ Γ∞ corresponds to the closed ball around ∗ of radius γ (i.e.,
the class of ∗ with respect to v(x,y) ⩾ γ). We thus identify Γ∞ with the set
of closed balls containing ∗.

We denote by RV the subset of Bo consisting of balls b not containing ∗,
with c(b) ∈ Γ (i.e., with ∗ ∈ c(b) \ b). The closure map thus restricts to a
map vRV = c : RV −→ Γ. The fibre RVb of vRV over a ball b ∈ Γ is thus the
fibre Bo

b of c, with one element removed. We note that, as a result of this
removal, RV is a set of disjoint open balls.

Exercise 2.2.7. Verify that the description above coincides with the algebraic
description that was given for ACVF

Definition 2.2.8. The collection of 0-definable sets of the formRVb is known
as RES (the residue structure)RES

residue structure
Note that RVb is definable precisely if b is, which may happen even if

RVb has no definable point.
We say that T is strongly C-minimal if it is C-minimal, and both RES andstrongly C-minimal

Γ are stably embedded. By 2.1.5 and 2.2.5, this holds in ACVF.

Remark 2.2.9. The function v can be viewed as a generalised (ultra-) metric
(where, as usual, we invert the meaning of the order), and the terminology
is follows this point of view. An alternative point of view is to view the
structure as describing a particular kind of directed tree: the vertices of the
tree are the closed balls Bc, and there is a path from b1 to b2 if b2 ⊆ b1.
The leaves of the tree the balls of radius ∞, i.e., the elements of VF. The
tree comes with an addition structure of the “level” of a given vertex, i.e.,
its radius. The set Γ∞ of levels can be identified with any complete branch
through the tree. Such a branch is determined by its leaf, as with ∗ above.
The set open balls inside a closed ball b is the set of maximal subtrees of
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the subtree determined by b (i.e., the set of “connected components” of the
subtree under b, with b removed). The whole tree can be viewed as the
unique “open ball” of radius −∞ □

2.3. Imaginaries and definable power sets. We make a small digression to
introduce definable power sets, which will simplify the discussion later. We
work in an arbitrary theory T.

If Z ⊆ X × Y is a definable set, and A is a T-structure, we set Za = {x ∈
X : (x,a) ∈ Z}, an A-definable subset of X (which we call the fibre over
a). Thus, each a ∈ Y(A) determines an A-definable subset of X. We say
that the pair (Y,Z) is an definable power set of X if for anyA, anyA-definable definable power set

subset of X arises as Za for a unique a ∈ Y(A).
If anA-definable subset W of X has the form Za for a unique a ∈ A (with

Z possibly depending on W), we say that W can be defined with a canonical
parameter (and a is then a canonical parameter for W). Clearly, if X admits a defined with a canonical pa-

rameterdefinable power set, then every one of its subsets is definable with a canon-
ical parameter.

Example 2.3.1. Let X be the universe in the theory of an infinite set with
equality (i.e., the formula x = x). Does X admit a definable power set? Let
b and c be two distinct elements, and let W = {b, c}. Assume that W = Za

for some Z and a unique a (note that a is a tuple with entries in {b, c}). a
cannot be empty, since an arbitrary two element set is not definable over
0. On the other hand, if a is not empty, the automorphism of the universe
that exchanges b and c move a to some distinct d, but fixes W. Thus, W =
Zd, contradicting uniqueness. Thus, W cannot be defined with a canonical
parameter, and consequently X does not admit a definable power set. □

Example 2.3.2. Consider now A1, given by the formula x = x in the theory
ACF, let Y = A2, and let Z = {(x, c,d) : x2+cx+d = 0} ⊆ X×Y. Then every
subset W = {a,b} is represented uniquely as Zc,d, with c = −(a + b) and
d = ab. Thus, any set of size 2 can be defined with a canonical parameter
(in fact, (Y,Z) is the family of all non-empty subsets of X of size at most
2). More generally, subsets of size n are coded by polynomials of degree n
whose roots are simple (this is an algebraic condition on the coefficients).

Does X admit a definable power set? Such a definable power set would
have to contain as definable subsets the families Yn of all definable subsets
of X of size n, for each n ∈ N. However, it is intuitively clear (and not hard
to prove using, e.g., Morley rank or Zariski dimension) that Yn cannot be
contained in Xn−1. It follows that no single definable set can classify even
all finite subsets of X. □

Exercise 2.3.3. Show that a theory T admits elimination of imaginaries if and
only if for every structureA, everyA-definable set W can be defined with a
canonical parameter
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Though example 2.3.2 shows that definable power sets in ACF do not
exist, it also shows that the collection of all finite subsets of A1 is coded by
a system of definable sets. This motivates the following definition.

Definition 2.3.4. An ind-definable set in a theory T is a system X = (Xα) ofind-definable set

definable sets and definable maps between them, which is filtering: For any
Xα and Xβ in the system, there are maps Xα −→ Xγ and Xβ −→ Xγ in X,
into a common object Xγ, and for any two maps f,g : Xα −→ Xβ, there is a
map h : Xβ −→ Xγ with h ◦ f = h ◦ g.

A map from one ind-definable set X to another Y consists of a definable
map fα : Xα −→ Yβ from each Xα into some Yβ (depending on α), such the
obvious diagrams commute; but two such system of maps (fα) and (gα)
are identified if for every α there are maps s and t in the system Y with
s ◦ fα = t ◦ gβ.

In particular, a chain of inclusions of definable sets is ind-definable. For
example, the set of all polynomials, or of all polynomials with simple roots,
can be viewed as an ind-definable set in ACF.

We view a definable set as an ind-definable set represented by a constant
sequence. It is easy to see that (finite) Cartesian products of ind-definable
sets are again ind-definable. If A is a structure, and X = (Xα) is an ind-
definable set, we define X(A) to be the direct limit X(A) = lim−→Xα(A). In
particular, it makes sense to ask whether a definable power set exists as an
ind-definable set, i.e., for a definable set X, are there ind-definable sets Y
and Z ⊆ X×Y, such that every definable subset of X has the form Za for a
unique a ∈ Y(A).

Exercise 2.3.5. Show that T admits elimination of imaginaries if and only if
every definable set has an ind-definable power set.

Exercise 2.3.6. Assume that (Y,Z) is an ind-definable power set of X. Show
that for any family T ⊆ X × W, with T and W ind-definable, there is a
unique map f : W −→ Y with Ta = Zf(a) for structures A and a ∈ W(A).2

In particular, any two ind-definable power sets for a given definable set
X are canonically isomorphic.

From now on, we assume that T admits elimination of imaginaries. For
every definable set X, we denote by (P(X),∈X) the definable power set.

Similarly, a definable map f : X × Y −→ Z can be viewed as a definable
family of maps fa from Xto Z, one for each a ∈ Y(A). (Y, f) is called an
internalHom fromX toZ if anyA-definable map has the form fa for a uniqueinternal Hom

a ∈ Y(A). Again, it makes sense to ask this for Y ind-definable, and if such
and ind definable set (Y, f) exists, we denote it by Hom(X,Z), and the map
f by ev (evaluation).

2 The converse is also true: if (Y,Z) is a pair with this property, then it is an ind-definable
power set. This is the standard definition of the “power object” in an arbitrary category
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Exercise 2.3.7. Show that ind-definable internal Homs exist if and only if
ind-definable power sets exist (for all definable sets). Show also that de-
finable maps f : X × Y −→ Z correspond bijectively to definable maps
Y −→ Hom(X,Z).

From now on, we say simply “Hom(X,Y) exists” to mean that it exists as
an ind-definable set.

Exercise 2.3.8. Show that if Hom(X,Y) exists for each definable Y, then it
also exists for each ind-definable Y.

The last few exercise simplify proving elimination of imaginaries in some
cases:

Proposition 2.3.9. Assume that the theory T is generated by a collection of sorts
Xα (in the sense that every definable set is a subset of some product of sets Xα),
and at least one of them has two definable elements. Then T eliminates imaginaries
if and only if Hom(Xα,Xβ) exists for all α,β.

Proof. One direction is Exercises 2.3.5 and 2.3.7. Assume that the internal
Hom sets in the statement exist. We first claim that Hom(Xα,Y) exists for
an arbitrary definable set Y. If Y is a Cartesian product of some Xβs, then
Hom(Xα,Y) =

∏
βHom(Xα,Xβ). A general definable set Y is a subset of

such a product, so Hom(Xα,Y) is a subset of the above given by a definable
condition.

Next, we claim that Hom(X,Y) exists for X a product of Xα, by induction
on the length of the product. If X = X1 × . . .× Xn+1 (with Xi basic sorts),
then Hom(X,Y) = Hom(X1 × . . . × Xn,Hom(Xn+1,Y)), where the right
hand side exists by induction (and Exercise 2.3.8).

In particular, the definable power set P(X) = Hom(X, 2) exists for all
Cartesian products of basic sorts X (where 2 is the set consisting of two
definable elements). If Y is a definable subset of X, the definable power set
P(Y) is clearly a definable subset of P(X). By Exercise 2.3.5 again, we are
done. □

Example 2.3.10. Let TA = DOAGA be the theory of divisible ordered abelian
groups, with parameters for a non-trivial structure A. The TA eliminates
imaginaries: by the proposition, we need to show that the family of maps
from the (unique) sort Γ to itself is ind-definable. By quantifier elimination,
any such map is piecewise of the form f(x) = qx + t, with q rational. Dif-
ferent rationals q and elements determine different functions. Hence, the
collection of functions of this shape is coded by a disjoint union, indexed
by Q, of copies of Γ. A general function is determined by specifying a fi-
nite partition of Γ (i.e., a finite tuple of elements of Γ), and a function of the
above form on each. Clearly, this is ind-definable. □

We mention also a relation between definable power sets and stable em-
beddedness:
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Exercise 2.3.11. Assume T admits EI. Show that a definable set X is stably
embedded if and only if P(X) is (isomorphic to) an ind-definable set in the
reduct generated by X.
2.4. Orthogonality.
Definition 2.4.1. Definable sets X and Y are strongly orthogonal if any de-strongly orthogonal

finable subset of Xk × Ym is a finite union of definable sets of the form
Z×W, with Z ⊆ Xk and W ⊆ Ym. They are orthogonal if they are stronglyorthogonal

orthogonal over the algebraic closure.
Thus, orthogonality is the strongest form of independence between de-

finable sets: no non-trivial relations exist.
We recall that a definable set X is stable if there is no formula ϕ(x,y),stable

even over parameters, that determines a linear order on an infinite set A of
realisations of X (we will only use this notion when X is stably embedded).
Any Cartesian product of stable sets is stable, and any strongly-minimal set
is stable. In particular, the RES sorts in ACVF are stable.
Proposition 2.4.2. Assume X and Y are stably embedded definable sets in a the-
ory T, such that X is stable, and Y admits a definable order. Then X and Y are
strongly orthogonal. In particular, in a strongly C-minimal theory T, Γ and RES
are strongly orthogonal.
Proof. We first note that any definable map from X to Y is piecewise con-
stant: if f : X −→ Y has infinite image, the formula f(x1) < f(x2) orders an
infinite set. The same is true for maps from Xk to Ym.

Now, any subset Z ⊆ Xk×Ym determines a mapXk −→ P(Ym) (mapping
a to Za). Since Y is stably embedded, this map factors through some Yl,
hence has finite image. Since Y is ordered, each element of the image is
definable, and so we may assume that the map is constant. This means that
the fibre Za does not depend on a in this part of the domain, i.e. that Z is a
product. □

Other sets of balls (such as RV) are more complicated, namely, they have
both strongly minimal and o-minimal aspects. Nevertheless, using their
relations with these parts we may deduce some results about maps between
them.
Proposition 2.4.3. Any infinite set of balls of a fixed radius γ admits, over param-
eters, a surjective map onto a strongly minimal set. Hence any map from a subset
of Γ to such a set is piecewise constant
Proof. Let X be the union of the balls. By quantifier elimination, X contains
a closed ballB of radius greater thanγ. The set of maximal open sub-balls of
B is strongly minimal, and each of the original balls is contained in at most
one of them. The map that assigns to each such original ball the maximal
open sub-ball of B containing it is surjective.

The second statement follows directly from the first and orthogonality.
□
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Corollary 2.4.4. In a stronglyC-minimal theory T, the map vRV : RV −→ Γ admits
no definable section over an infinite set. More generally, any definable subset of
RVn whose projection to Γn has finite fibres is finite.

We note that this is true even with parameters, since adding parameters
does not change the assumptions.

Proof. Assume there is a definable section s : I −→ RV, where I ⊆ Γ is an
infinite definable subset, which we may assume to be an interval (by o-
minimality). By C-minimality, the union ∪γ∈Is(γ) is a finite union of swiss
cheeses, and by further reducing I, we may assume it is one swiss cheese, a
ballB of radius γ, with a finite number of smaller balls removed. By passing
to a slightly smaller ball, we may assume that B is closed.

Consider the map s ′ on I attaching to δ the open ball of radius γ inside B
that contains s(δ). By Prop. 2.4.3, s ′ has finite image. But this means that all
s(δ), for all δ ∈ I, are contained in a finite union of balls properly contained
in B, contradicting the definition of B.

The more general statement follows by induction (exercise). □

Proposition 2.4.5. Any infinite set of closed balls admits, over parameters, a sur-
jective map onto an o-minimal set. Hence, any map from a stable set to a set of
closed balls is piecewise constant

Proof. If the radius map on the set of balls has infinite image, we are done.
Otherwise, we may assume all balls have the same radius γ. As in the proof
of 2.4.4, the union of all these balls contains a closed ball of radius δ > γ,
with a finite number of sub-balls removed. If c is any fixed point of this set,
the function that sends a ball to its distance from c has infinite image. □

3. Grothendieck semi-rings in ACVF

We continue the study of definable sets in ACVF, with the aim of prov-
ing some of the main results of [12]. The results themselves are explained
in §3.4. We sketch the general structure

However, we start with an elementary formulation of those parts whose
proofs we explain.

An application in the spirit of the classical p-adic integration is explained
in the end of §3.3.

3.1. Surjectivity of the pullback from RV. We now go back to the setting
of valued fields: we assume that T is a C-minimal theory expanding VF.
Our goal is to prove that up to “measure preserving” transformations, ev-
ery subset of VFn (and more generally, of VFn × RVm) is piecewise the
pullback of some subset in RV. This will imply that we may define a “mea-
sure” on definable subsets inVF by pulling back a suitably defined measure
from RV (suitably defined means that the measure should be the same on
subsets of RV that pull back to the same class of subsets of VF). In terms of
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Grothendieck semirings, this will imply that the map on the level of semir-
ings is surjective. However, at this point, these semirings are not yet de-
fined.

The plan above, and the definition of the Grothendieck semiring of VF,
depend upon the right notion of “measure preserving” maps. Since the
statement becomes stronger with a smaller class of maps, the following no-
tion of “measure preserving” is reasonable.
Definition 3.1.1. Let n be fixed. An admissible map is a definable map whichadmissible map

a composition of maps of the following forms
(1)

(x̄, ȳ) 7→ (x1, . . . , xi + a(x1, . . . , xi−1, ȳ), xi+1, . . . , xn, ȳ) (24)
where x̄ are VF variables, ȳ are RV-variables, and a is definable

(2) (x̄, ȳ) 7→ (x̄, ȳ, rv(xi))

As mentioned above, we would like to prove that every definable subset
of VFn is, up to an admissible transformation, piecewise a pullback from
RV. To have any hope for such a statement to be true, we need to have
“sufficiently many” admissible transformations: for example, we need to
be able to shift a ball sufficiently close to 0. This is equivalent to having a
definable point (centre) in the ball. We note that in general, ifB is a definable
ball, there need not be a definable element (over 0) insideB. Hence, we need
an additional assumption, expressed through the following definition.
Definition 3.1.2. A C-minimal theory T of valued fields is said to have cen-
tred closed balls if any definable closed ball in T has a definable centre3centred closed balls

We may now formulate the main result.
Proposition 3.1.3. Assume that T is a C-minimal theory of valued fields, such
that for any T-structure A, TA has centred closed balls.

Let X be a definable subset of VFn × RVl. The there is a definable partition of
X into finitely many pieces Z, such that for each Z we have TZ = (rv, 1)−1(H) for
some definable H in RV and some admissible transformation T.

If Z is bounded, then so is H.

For subsets ofRVl, by bounded we mean bounded from below, i.e., vRV(r) ⩾
γ for some γ. We will see below that the assumptions of the proposition
hold in the case of ACVF0,0.

Baring in mind that RV is a set of balls, this statement can be thought of
as the analogue to the description of definable sets that occurs in the proof
of Theorem 1.1.4 in Denef’s theory (the description here is actually simpler,
since the root predicates do not occur). As in that proof, the result follows
by induction and compactness from the case of a single coordinate, which
we now formulate (this will be the analogue of 1.3.8)

3This is slightly stronger than the definition in [12], but coincides with it in residue char-
acteristic 0
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Lemma 3.1.4. Assume T as in Prop. 3.1.3. Then any definable subset of VF if a
finite disjoint union of definable set Z with TZ = (rv, 1)−1(H) with T admissible,
and H definable in RV. If Z is bounded, then so is H.

We note that admissible maps in one VF variable are particularly simple,
so the lemma says: Z is piecewise of the form a + rv−1(H) for a ∈ VF and
H definable in RV.

Exercise 3.1.5. Deduce Proposition 3.1.3 from Lemma 3.1.4

Proof of 3.1.4. We consider several cases for X
A closed ball. After translation, X = v−1([γ,∞]) (the translation exists by
the centred closed balls assumption)
An open ball. After translation, the closure of X is around 0. If X itself is
around 0, it is the inverse image of a half-open interval, otherwise it is (the
inverse image of) a point in RV
A ball with a closed ball removed. Exercise
A closed ball with a finite number of open balls of the same radius re-
moved. Exercise
A union of m of the above. By induction on m. Let E be the smallest ball
containing X. Sincem > 1, E is closed, and we may assume it contains 0. By
minimality of E, X is not contained in a maximal open sub-ball, and we may
assume that it does not intersect any open sub-ball of E around 0 (otherwise,
the part that intersects is definable and divides X into pieces with smaller
m, and we are done by induction).

Hence, rv(X) has more than one point. The fibres Xb of rv admit, by
induction, admissible maps Tb and definable Hb as stated, which can be
chosen uniformly. Hence T(x) = (Trv(x)(x), rv(x)) solves the problem.
The general case. We may assume thatX is a finite union of balls of the same
radius, with some balls removed (exercise). Let β be the distance between
the closest holes of X. Let C be the union of closed balls of radius β around
the holes of X. Then X is the disjoint union of X\C and C∩X. The first has
fewer holes, so follows by induction, hence we may assume that C∩X = X.
Let D be the union of maximal open sub-balls that contain the holes of X.
TheX is a disjoint union ofC\D andD. Each of these reduces to the previous
special cases. □
3.2. Centred closed balls. We now show that the assumption of Proposi-
tion 3.1.3, namely, that TA has centred closed balls (def. 3.1.2) holds for
T = ACVF0,0. The assumption on the characteristic plays a role via the
following observation.

Lemma 3.2.1. Assume that a ball in ACVF0,0 contains a finite definable set. Then
it contains a definable point.

Proof. We may assume that the finite set A = {a1, . . . ,an} is a single orbit
under the Galois group. Also, we may assume the ball is closed, the smallest
closed ball containing A.
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Let a = a1+···+an

n
. Then a is definable, and

|a− a1| = |
a1 − a1
n

+ · · ·+ an − a1
n

| ⩽ max
i

|ai − a1| (25)

Each element in the maximum on the right is at most the radius of the ball,
hence so is the left hand side. Thus, a is in the ball. □

It follows from this lemma that ifA is generated by itsVF part, then every
closed ball has as centre, since in this case the algebraic closure of A is a
model. However, not every structure is generated by its VF part. If A is a
model, and we add an element b to Γ(A) or to RV(A), there will be new
b-definable balls, which we do not yet know to contain a centre. However,
we will show that any such ball contains an A-definable ball, and the result
will follow.

To state the following lemma, we need an additional definition. Recall
the p-adic fields are complete with respect to their absolute value. This is
not a first order property, but we have the following definable analogue.

Definition 3.2.2. A C-minimal theory is definably complete if any definabledefinably complete

nested family of balls has a non-empty intersection

A family of balls is nested if no two are disjoint. Note that the intersection
is a definable set, so this is indeed a property of the theory. A model of the
theory may have the property that any nested family of balls has a non-
empty intersection. In this case, the theory is clearly definably complete.
This is the situation in ACVF: such models are called spherically complete.spherically complete

We remark also that the condition extends to type-definable families of
nested balls, since each such family is contained in a definable one.

Lemma 3.2.3. Let T be a definably complete C-minimal theory, and let Γ0 be a set
of elements from Γ. Then any non-empty Γ0-definable ball contains a non-empty
definable sub-ball.

Proof. We may assume that Γ0 is finite, and by induction to consists of one
element γ0. Let X ⊆ Γ be the type of γ0. For every γ ∈ X, we are given
a ball Bγ defined over γ. We wish to show that the family Bγ (indexed by
γ ∈ X) is nested. This will complete the proof, since the intersection will be
a definable sub-ball, which is non-empty by definable completeness.

The radius r(γ) of the ball Bγ is a definable function from X to Γ, hence
monotone, and we will assume for simplicity of notation that it is the iden-
tity, i.e., Bγ is of radius γ. Thus, we wish to show that if γ1 < γ, then
Bγ1 ⊂ Bγ.

For γ1 < γ2 in X, let d(γ1,γ2) be the distance between Bγ1 and Bγ2 . Sup-
pose that for some γ2, for all sufficiently close γ1 < γ2 we have d(γ1,γ2) ⩾
γ2. Then for some γ > γ2 sufficiently close to γ2 we also have d(γ1,γ2) >⩾
γ (since d(γ1,γ2) is defined over γ1,γ2). In other words, either Bγ1 ⊆ Bγ2 ,
or the distance between them is at least γ.
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Let B ′
γi

be the open ball of radius γ around Bγi
. Then we have seen that

either Bγ1 ⊂ Bγ2 for γ1 < γ2 < γ (sufficiently close to γ), or the balls B ′
γ

are all distinct. In the first case we are done, since γ and γi all have the
same type. In the second case, we have an injective definable map from an
infinite subset of Γ to a set of balls of the same radius. This is excluded by
Prop. 2.4.3. □

The last lemma allows us to reduce to the case where the map v : VF(A) −→
Γ(A) is surjective. Next, we deal with RV.

Lemma 3.2.4. Let T be a definably complete C-minimal theory, and letA0 be a set
of elements from RV. Then any non-emptyA0-definable ball contains a non-empty
definable closed sub-ball.

Proof. As before, we may assume that A0 consists of one element, a. By
Lemma 3.2.3, we may assume that γ = vRV(a) is definable. Hence, we have a
definable family of closed ballsBx, with x ranging over the strongly minimal
setRVγ. By Prop. 2.4.5, this family is constant, i.e., Ba itself is definable. □

To summarise, we have the following.

Corollary 3.2.5. Let T = ACVF0,0. For any T-structureA, the theory TA admits
centred closed balls. Hence, in ACVF0,0, any definable set is, up to admissible
transformations, a pull back of a definable set in RV ∪ Γ.

Proof. Let A0 be the substructure of A generated by VF(A). If B is a non-
empty closed ball defined over A, by Lemmas 3.2.3 and 3.2.4 it contains a
non-empty closed ball B ′ defined overA0. Since the algebraic closure ofA0

is a model, B ′ contains a point there. By Lemma 3.2.1, it also has a point in
A0.

The second statement follows from Prop. 3.1.3. □
We also note the following corollary regarding maps into VF

Corollary 3.2.6. Any map fromRVn (and hence fromΓn) to a set of disjoint closed
balls is piecewise constant

This applies, in particular, to balls of radius 0, i.e., elements of VF.

Proof. The closed ball given by Lemma 3.2.4 is contained in any ball in the
image (after a finite partition of the domain). Since all balls in the image are
disjoint, the map must be constant. □
3.3. Surjectivity of the map to the Grothendieck group of RV. Let R be a
ring. A definable R-module in a theory T is a definable abelian group A in T, definable R-module

together with a map of rings from R to the ring of definable endomorphisms
of A.

Proposition 3.3.1. Let R be a ring, and assume π : B −→ C is a surjective map of
definable R-modules in T, with kernel A. Assume:

(1) A and C are stably embedded and orthogonal
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(2) Every definable subgroup of An is defined by R-linear equations.
(3) If the restriction of π to some definable P ⊆ Bn has finite fibres, then P is

finite.
Then every definable subset of Bn is a finite union of sets of the form π−1(W) ∩
r−1(Y + b), where W ⊆ C, r is a matrix over R, Y ⊆ Ak, and b ∈ Bk.

We note that the assumptions above hold for B = RV and π = vRV (and
R = Z) in ACVF

Proof. Replacing R with Mn(R), we may assume n = 1. Let Z ⊆ B. The as-
signments c 7→ Zc determines a mapC −→ P(B). The addition induces an ac-
tion ofB onP(B) (by translation), so we obtain a map s̃ : C −→ P(B)/B. Since
every element Zc is a subset of a coset, this map factors through P(A)/A.
But A is stably embedded, and orthogonal to C, so this map is piecewise
constant, and we may assume it is constant. Let A0 ⊆ A represent this con-
stant element.

Let S be the stabiliser of A0. Since S fixes all the fibres Zc (as sets), it also
fixes Z as a set over C, so S is definable. The definable set Z/S admits a
well-defined map π̄ to C. If z1 and z2 are two elements in the same fibre Zc,
then they differ by an element of S, hence we have a well defined section
s : π(Z) −→ Z/S. It follows that if r ∈ R is 0 on S, we have a well defined map
sr = rs : π(Z) −→ rZ, so that rZc = sr(c) + rA0.

Fix r as above. Then for d ∈ C in the kernel of r, we have πsr(d + c) =
r(d+ c) = rc = πsr(c), hence sr(d+ c)− sr(c) ∈ A. Again by orthogonality,
this is a piecewise constant function of d, c. It follows that the image of sr
projects with finite fibres to C. By the third assumption, it is finite. □
Corollary 3.3.2. Every definable subset of RVn is a finite disjoint union of pieces
X, each of the form dx = T(Y × Z), where Z = v−1

RV (W) with W ⊆ Γk, vRV(Y)
consists of one point (i.e., is a translate of a constructible set in the residue field),
and T is an invertible Z-linear transformation.

Combining with 3.2.5, we obtains one direction of the integration results:

Corollary 3.3.3. Any definable subset of VFn × RVl can be partitioned into
finitely many pieces of the form T(X×∆), where T is an admissible transformation,
X is a definable subset in RES, and ∆ is a definable subset in Γ .

The following corollary is a uniform version of the integration type re-
sults that were discussed in §1. As explained in the proof, we obtain a con-
clusion about discretely valued fields in mixed characteristic, despite the
fact that we were working in ACVF0,0. This is essentially due to the quanti-
fier free nature of the statement. It is analogous to the original results 1.1.1
by Igusa, rather than the more general results by Denef. Results of the latter
type can also be dealt with, but with additional effort (c.f. [12, §12]).

Corollary 3.3.4. Let f = (f1(x1, . . . , xn), . . . , fk(x1, . . . , xn)) be polynomials
over Z. Then there are finitely many generalised varieties Xi and polyhedra ∆i
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such that for sufficiently large prime p, for any local field L of residue characteristic
p, we have ∫

On

|f|s =
∑
i

q−rγ(i)(q− 1)ni#Xi(L)evL(∆i) (26)

Where r is the ramification degree of L, q is the size of the residue field, γ(i) and ni

are non-negative rational and integer (resp.), and

evL(∆) =
∑

(x,y)∈∆(L)

q−r((
∑

y)+s·x) (27)

Proof. Consider the definable subset Z of VFn × Γk given by the graph of
v ◦ f. As usual, ∫

On

|f|s =
∑
a∈Γk

+

qr(s·a)µ(Za) (28)

On the other hand, by the previous corollary, Z is, up to admissible trans-
formations, piecewise of the form rv−1(Xi)× v−1(∆i) for some generalised
varieties Xi and polyhedra ∆i. This is true in ACVF0,0. However, we note
that all sets involved are quantifier-free, and therefore this also holds in sub-
structures. Furthermore, the statement depends only on finitely many ax-
ioms of ACVF0,0, hence also holds in prime (residue) characteristic for suf-
ficiently large prime.

It follows by translation invariance, additivity and Fubini, that µ(Za) =∑
i µ(rv

−1(Xi))µ(v
−1(∆ia)), so it remains to compute each term separately.

For X a generalised variety, we may assume that X is contained in one
fibre of vRV, the fibre over γ̄. Then each point of X(L) represents a product
of open balls, of radii γj, and the measure of such a product is q−r

∑
j γj .

Hence µ(rv−1(X)) = q−rγ#X(L), where γ =
∑

j γj.
On the other hand, given γ̄ ∈ Γn, the set v−1(γ̄) is a product of n “thin

annuli”, of radii γi, so its measure is Πj(q− 1)q−rγj = (q− 1)nq−rγ, with
γ =

∑
j γj. Therefore, for a polyhedron ∆ we have µ(v−1(∆a)) = (q −

1)n
∑

(a,γ̄)∈∆ q
−rγ, where ∆a = {γ̄ ∈ Γn : (a, γ̄) ∈ ∆} and, as before,

γ =
∑

j γj. Combining the computations, we get the result. □
3.4. Grothendieck semi-rings, and main results. We will now state some
of the main results of [12]. Recall that we are interested in assigning, to each
definable subset ofVF∗×RV∗ a universal “measure”, taking values in (vari-
ants of) the Grothendieck rings of generalised varieties and of Γ. This mea-
sure should be invariant under “measure preserving” transformations, ad-
ditive with respect to disjoint unions, and multiplicative on Cartesian prod-
ucts. In other words, the domain of the measure is also a Grothendieck ring,
the Grothendieck of definable sets in ACVF and certain definable maps.

We make two more general remarks: First, the Grothendieck semi-groups
and semi-rings (with no additive inverse) carry substantially more informa-
tion than the corresponding rings, since cancellation induces strong rela-
tions. For example, if a is a definable element of the valuation ring, then
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the valuation ring O and the ideal generated by a are isomorphic, so the
class of the annulus O \ aO is 0 in the Grothendieck ring of ACVF (with all
definable bijections). This need not be the case in the semi-ring.

The other remark is that there are actually infinitely many measures, one
for each dimension. For example, the measure of the valuation ring as a
subset of A1 should not be the same as its image under a linear embedding
in A2.

Hence, we expect the motivic measure to be a map from a certain graded
Grothendieck semi-ring of definable sets in ACVF to a graded semi-ring of
definable sets in RES and Γ. This is indeed the result, but it is convenient to
pass through the Grothendieck semi-ring of RV. There several variants of
the main result, depending on the kind of structure one wishes to preserve.
We describe in some detail one where no measure is actually preserved, i.e.,
we compute the Grothendieck semi-ring of VF, with all definable maps.
Other variant are similar, and mostly follow from this case, but involve a
careful definition of measure preserving maps.

We begin by defining dimensions, which determine the grading. We will
say that a definable set X is quasi-finite over a definable set Y if there is aquasi-finite

definable map with parameters from X to Y, whose fibres are finite (hence,
the dimension of X should be at most that of Y).

Definition 3.4.1. Let X be a definable set in ACVF.
(1) The VF-dimension of X is the smallest n for which X is quasi-finiteVF-dimension

over VFn ×RV∗ × Γ∗.
(2) The RV-dimension of X is the smallest n for which X is quasi-finiteRV-dimension

over (RV ∪ Γ)n (if such an n exists)

Only finite subsets of VFn have an RV-dimension. On the other hand,
note that the VF-dimension of a subset of RV (or Γ) is 0. More generally,
it is an exercise that X has VF-dimension at most n if and only if there is a
definable map f : X −→ VFn (with parameters), whose fibres are in RV. It
is possible to show that the RV-dimension of the fibres in this case is essen-
tially independent of f.

Definition 3.4.2. (1) VF[n, ·] is the category of definable sets ofVF-dimensionVF[n, ·]

at most n, with morphisms all definable maps.
(2) VF[n] is the full subcategory of VF[n, ·] of objects for which the RV-VF[n]

dimension of the fibres of a map to VFn is 0.
(3) RV[n, ·] is the category whose objects are pairs (X, f), with X ⊆ RV∗

RV[n, ·]

and f : X −→ RVn is a definable map. A morphism from (X, f) to
(Y,g) is a map that determines a correspondence on the base, i.e., a
map h : X −→ Y such that the first projection of {(f(x),g(h(x))) : x ∈
X} is finite-to-one.

(4) RV[n] is the full subcategory ofRV[n, ·] consisting objects (X, f)whereRV[n]

the fibres of f are finite.
(5) RES[n] is the full subcategory of RV[n] consisting of objects (X, f)RES[n]
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with X ⊆ RES.
(6) Γ[n] is the category whose objects are definable subsets of Γn, and Γ[n]

whose morphisms are piecewise of the form x 7→ Bx+ c, where B is
an integral matrix, and c is an element of the group of values of K.

We note that elements (and subsets) of RV have a “dual nature” in terms
of dimension: when pulling back a subset ofRV, one obtains a set of positive
VF-dimension. The RV-dimension is designed to reflect this fact. On the
other hand, the VF-dimension of RV itself is 0. Thus, an object (X, f) of
RV[n, ·] should be thought of as the n-dimensional subset f(X), with some
0-dimensional fibres attached. A morphism in RV[n, ·] is thus viewed as a
correspondence on f(X), together with a matching lifting to the fibres.

We also let RV0 be the union of RV with a formal element 0, and define
rv(0) = 0, vRV(0) = ∞ ∈ Γ∞. We define RV0[n, ·] and RV0[n] analogously
to the case of RV. Then an object (X, f) of RV0[n, ·] determines an object of
RV[m, ·], where m is the number of non-zero coordinates of f (by erasing
the 0 coordinates). This clearly determines an equivalence of RV0[n, ·] with
⊕m<⩽nRV[m, ·] (and likewise for RV0[n]).

We have seen in Prop. 3.2.5 how to obtain definable sets in ACVF by
pulling back from RV. This can be reformulated as follows: For an object
(X, f) of RV0[n, ·], let

L(X, f) = VFn ×RVn
0
X = {(y, x) ∈ VFn ×X : rv(y) = f(x)} (29)

This is clearly an object of VF[n, ·]. Note that L(X, f) ∈ VF[n] if and only if
(X, f) ∈ RV0[n].

Exercise 3.4.3. Show that any object in VF[n, ·] is isomorphic, via an admis-
sible transformation, to an object of the form L(X, f).

The definition of morphisms in RV[n, ·] is motivated by the following
observation.

Lemma 3.4.4. Assume that (X, f) and (Y,g) are objects of RV[n, ·], and h : X −→
Y is a bijection that lifts to a bijection H : L(X, f) −→ L(Y,g). Then h is a mor-
phism of RV[n, ·]

Proof. We need to show that the first projection from {(f(x),g(h(x)) : x ∈
X} has finite fibres, i.e., that for all x ∈ X, g(h(x)) is algebraic over f(x).
Since H is a lift of h, we have H(v, x) = (u(v, x),h(x)) for some definable
u : L(X, f) −→ VFn, and g(h(x)) = rv(u(v, x)). By 3.2.6, for each v ∈ VFn,
u(v, x) is algebraic over v. So g(h(x)) is algebraic over (v, x) for all v satisfy-
ing rv(v) = f(x). Hence, it is algebraic over f(x). □

It turns out that the converse of this lemma also holds: An isomorphism
in RV[n, ·] can be lifted to a definable bijection in VF. This is proved in [12,
Prop. 6.1].

It follows that L determines a map of semigroups L : K+(RV0[n]) −→
K+(VF[n]). The semigroups K+(VF[n]) define an increasing filtration of
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K+(VF), the Grothendieck semi-ring of all definable sets in ACVF and bi-
jections. Likewise, we have embeddings of K+(RV0[n]) −→ K+(RV0[n+ 1]),
obtained by adding an additional 0 coordinate, and the union K+(RV[∗]) =
lim−→n

K+(RV0[n]) forms a filtered semi-ring, with the obvious product. Since
L clearly commutes with the product, we obtain from the above discussion
and from 3.2.5 the following result.

Proposition 3.4.5. The operation L induces a surjective homomorphism of filtered
semirings, L : K+(RV[∗]) −→ K+(VF)

To obtain the integration result, we need to know the kernel of the map L
from the proposition, i.e., answer the question: which sets in RV pull back
to the same (up to bijection) set in VF? This is done in [12, §7] (and is the
most technical part of the paper). The answer turns out to be the following:
The subset RV+ of RV0, consisting of elements xwith vRV(x) > 0, pulls back
under L to the open ball of valuation radius 0 around 0 (i.e., to the maximal
ideal). On the other hand, the singleton {1} ⊆ RV pulls back to the open ball
of the same radius around 1. Hence, their image inK+(VF) is the same. This
turns out to be the only relation: letting Isp be the congruence in K+(RV[∗])Isp

generated by ([RV+]1, [{1}]1) (where [X]k denotes the class of X in the k-th
filtered piece of the semiring) one obtains the following main result.

Theorem 3.4.6 (Theorem 8.8 of [12]). The kernel pair of the mapL : K+(RV[∗]) −→
K+(VF) is precisely Isp. Hence there is an “integration” map

∫
: K+(VF) −→

K+(RV[∗])/Isp of filtered semirings, so that
∫
([L(X)]) = [X]/Isp for all X in RV.

The next stage is to analyse the target of the integration map, K+(RV[∗]).
The inclusion of RES in RV obviously determines a map from K+(RES[∗])
into K+(RV[∗]). On the other hand, pulling back along vRV determines a
map from definable sets in Γ to definable sets in RV. To obtain a map on the
level of Grothendieck rings, we need to determine which isomorphisms in
Γ lift to isomorphisms in RV.

We have already mentioned that Γ has the structure of a pure divisible
ordered abelian group, over the subgroup A of values of the base. Any
definable map in this theory is piecewise of the form x 7→ Bx+c, where B is
a matrix over Q, and c is defined overA, i.e., an element of Q⊗A. However,
not every such map lifts to a map in RV. For instance, the map x 7→ x

2 on
Γ corresponds to “extracting a square root” on RV, so does not exists as a
definable map. Likewise, if c ∈ Q⊗A \A, then x 7→ x+ c does not lift.

On the other hand, if B ∈ GLn(Z), and c ∈ A, then the map lifts: GLn(Z)
acts on Hn for any abelian group H, and translation lifts to multiplication
by any preimage of c under vRV. It turns out that these are precisely the
morphisms that lift; this is already true in the context of §3.3 (and is left
as an exercise). This motivates the definition of Γ[n] above. Thus, pullback
induces a map of graded semirings K+(Γ[∗]) −→ K+(RV[∗]).
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Combining the two maps, we obtain a graded mapK+(RES[∗])⊗K+(Γ[∗]) −→
K+(RV[∗]) (the tensor product is also graded). Let Γfin[n] be the full sub-
category of Γ[n] consisting of finite subsets. If X ⊆ Γn is a finite subset,
then v−1

RV (X) is, by definition, in RES[n], and its image in K+(RV[n]) coin-
cides with that of X. Hence, the map above induces a graded map

K+(RES[∗])⊗K+(Γfin[∗]) K+(Γ[∗]) −→ K+(RV[∗]) (30) {E:step2}

It follows directly from 3.3.2 that this map is surjective. It fact, we have

Theorem 3.4.7. The map (30) is an isomorphism of graded semirings.

The injectivity is proved in [12, Prop. 10.2] (and is not difficult). Compos-
ing the inverse of this map with the integration map from 3.4.6, we obtain
the motivic integration map∫

: K+(VF) −→ K+(RES[∗])⊗K+(Γfin[∗]) K+(Γ[∗])/Isp (31)

In the following section, we will study in more detail the co-domain of this
map, and some specialisations.

4. The co-domain of the integration map

In this section we analyse in somewhat more details the graded semi-
ring K+(RES[∗]) ⊗K+(Γfin[∗]) K+(Γ[∗]) in which the motivic integrals take
values. We present certain specialisations in terms of more familiar objects.
We conclude with an application from [13] to the monodromy action on the
Milnor fibre. We mostly follow §9,10 of [12], as well as [13].

The notation in this section is as follows: K is the ground field, which we
assume to be definably closed (i.e., Henselian), the residue field is denoted
by k, and the group of values by A. We recall that the definable closure of
A is the divisible hull Q⊗A of A.

4.1. Specialising the integration map. We recall that by quantifier elimi-
nation, any definable function from Γn to Γn is piecewise of the form x 7→
Mx + a, where M is a matrix over Q, and a is a tuple in the definable clo-
sure of A. However, not every such map is admitted in the definition of the
semi-ring K+(ΓA[∗]) that occurs in the statement of motivic integration: We
allow only maps that can be lifted to RV, namely, those for whichM is over
Z, and a ∈ A (rather than in Q⊗A).

Thus, we have surjective maps of semi-ringsK+(ΓA[∗]) −→ K+(ΓQ⊗A[∗]) −→
K+(DOAGA), where K+(DOAGA) is the usual Grothendieck semi-ring of
the theory DOAGA of divisible ordered abelian groups over A. We also
have the corresponding map of rings, c : K(ΓA[∗]) −→ K(DOAGA). We fix A
for the moment, and omit it from the notation. Note that under this map,
the graded sub-ring F := K(Γfin[∗]) corresponding to finite sets is mapped
onto Z, induced by counting the points.
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The ring K(DOAG) is not graded, but the grading can be restored by
tensoring with Z[T], to obtain a graded map c1 : K(Γ[∗]) −→ K(DOAG)[T],
c1(x) = c(x)Tn for x ∈ K(Γ[n]). We therefore obtain an induced map

Ẽ : K(RES[∗])⊗F K(Γ[∗]) −→ K(RES[∗])⊗F K(DOAG)[T] (32)
(all our maps and tensor products are graded). We note that the image of F
in K(DOAG) is Z[T], thus

K(RES[∗])⊗F K(DOAG)[T] =!K(RES[∗])⊗Z K(DOAG) (33)
(withK(DOAG) concentrated in degree 0), where !K(RES[∗]) = K(RES[∗])⊗F

Z[T] is the quotient of K(RES[∗]) by the ideal generated by the relations
[RVa] − [RV0] for a ∈ Q⊗A (and T is identified with the class of [RV0]).

According to Theorem 3.4.7, the domain of Ẽ is isomorphic to K(RV[∗]).
To obtain a map on K(VF), we will compose with a map that kills Isp, the
ideal generated by [1]1 − c(s)T − 1, where [1]1 is the class of {1} ⊆ A1, and
s is the class of (0,∞) ⊆ Γ (note that Isp is not homogeneous). Let u =

[1]1−c(s)T. Then the map that sends x ∈ K(RV[n]) to Ẽ(x)
un ∈ (!K(RES[∗])⊗

K(DOAG))[u−1] annihilates Isp. Thus we have the following result.

Corollary 4.1.1. There exists a map

E : K(VF) −→ (!K(RES[∗])⊗ K(DOAG))[u−1] (34)

where u = [1]1 − c([(0,∞)])T, which satisfies E(rv−1(X)) =
[X]
uk for X ⊆ RESk.

4.2. Computing K(DOAG). It turns out that K(DOAG) can be computed
explicitly. Before doing so, we make a general remark: Assume we are given
a definable map f : Z −→ X and a model M (all for an arbitrary theory
T). Every a ∈ X(M) determines an element [f−1(a)] of K(TM). If this is
the same class c for all a, and c comes from K(T), then [Z] = [X] · c. In
this case, we call f a definable fibration. This is also true when working withdefinable fibration

more restricted classes of “admissible” maps or objects, assuming that an
M-definable map is admissible if and only if it is a point in an admissible
family (over 0).

Exercise 4.2.1. Prove the remark above

Proposition 4.2.2. K(DOAGA) = Z2, with the class t of [0,∞) a non-trivial
idempotent

Proof. We first note that finite sets are isomorphic in DOAGA if and only
if they have the same cardinality (since every element is definable). Fur-
thermore, the classes of any two sets of the form [a,∞) are equal by trans-
lating, hence the class of any bounded half-open interval [a,b) is 0, since
[a,∞) = [a,b) ∪̇ [b,∞). This determines the class of any bounded set in
one variable. It follows that the class of any 1-variable subset is determined
by the value of t, i.e., the subring of K(DOAGA) generated by sets in one
variable is a homomorphic image of Z[t].
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We now prove by induction on n that the class of a definable set in n
variables is generated by classes of 1-variable sets. Consider the projection
of a definable subset Z ⊂ Γn+1 to the first n coordinates. By o-minimality
and compactness, Γn can be partitioned into finitely many pieces, such that
the fibres over each have the same shape (i.e., a disjoint union of the same
number of intervals, each of the same kind). By the one variable case, all
such fibres have the same class, hence, by the remark before the proof and
the induction hypothesis we are done.

We now show that t is an idempotent: t2 is the class of [0,∞)2 = {0} ×
[0,∞) ∪̇ X ∪̇ Y, where X = {(x,y) ∈ (0,∞)2 : x ⩽ y} and Y = {(x,y) ∈
(0,∞)× [0,∞) : y < x}. Again by the remark prior to the claim, the classes
of X and Y are the classes of bounded half-closed intervals, multiplied by
the class of (0,∞), hence they are 0. Therefore, t2 = t, and K(DOAGA) is
a homomorphic image of Z[t]/t2 − t = Z2. To show that this is an isomor-
phism, we need to produce maps χ,χ ′ : K(DOAGA) −→ Z with χ(t) = 0 and
χ ′(t) = 1.

The map χ can be defined as follows: We may assume that A is count-
able. Embed A in R, and set χ(X) = χc(X(R)), where χc is the topological
Euler characteristic with compact supports. This does not depend on the
embedding of A in R since we have already seen that there is at most one
such map. Since topologically, [0,∞) is homeomorphic to [0,a) for all a, we
have χ(t) = 0 (this invariant can also be defined directly in the o-minimal
setting without passing through the real realisation, cf [9]).

The second invariant is defined by χ ′(X) = limr−→∞ χ(X∩[−r, r]k), where
k is the ambient dimension. The limit exists by o-minimality, and direct
calculation shows that χ ′(t) = 1. This map is clearly not invariant under all
homeomorphisms, but it is invariant under all definable maps inDOAG, i.e.,
under Q-linear maps. To show this, one shows that any compact (in the R-
realisation) definable subset is contractible, hence has Euler characteristic 1,
and then induction on dimension (we omit the details, cf. [12, Lemma 9.6])

□

We denote by L the class of A1. Recall the difference between K(RES[∗])
and K(RES): K(RES) is the (non-graded) quotient of K(RES[∗]) in which
we forget the ambient dimension. !K(RES) is its quotient identifying all the
definable [RVa]. We may now make Corollary 4.1.1 more explicit (the proof
is a direct application of the proposition).

Corollary 4.2.3. The map E from Corollary 4.1.1 is identified under 4.2.2 with the
pair

(E1,E2) : K(VF) −→ !K(RES[∗])[[1]−1
1 ]⊕!K(RES[∗])[L−1] (35)

They induce maps E1 : K(VF) −→ !K(RES) and E2 : K(VF) −→ !K(RES)[L−1],
and both induces the same map EUΓ : K(VF) −→ K(RES), where K(RES) is the
quotient of !K(RES) (and of !K(RES)[L−1]) by T.
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4.3. Computing K(Γfin
A [∗]). It is also possible to compute rather explicitly

the Grothendieck ring of finite sets in Γ. We begin with a few preliminary
remarks. Each of the individual elements of a finite definable set is itself
definable (by o-minimality). Therefore, K+(Γ

fin
A [∗]) is generated (freely) as

a semi-group by the singletons. It follows, in particular, that it is a cancel-
lation semi-group, i.e., that the map into the associated group is an embed-
ding. Hence, we may pass to the ring F = K(Γfin

A [∗]).
Let τ = [0]1 be the class of {0} ⊆ ΓA. It follows from the above that τ

is not a zero-divisor in F: if it was a zero divisor, there would be points
x̄ and ȳ, and a Z-linear map mapping (0, x̄) to (0, ȳ), but then the same
map maps x̄ to ȳ (so they represent the same element in F). In particular,
F embeds in the localisation F[τ−1], a Z-graded ring. Each graded graded
piece can be mapped by a power of τ to the 0-th one, denoted Hfin. Thus,
F[τ−1] = Hfin[τ, τ

−1], and it remains to describe the ring Hfin.
We note that when A = Q ⊗ A, i.e., when A is divisible, then all single-

tons are isomorphic, and we have Hfin = Z. In general, Hfin (and F) may
be viewed as measuring the “distance” between A and Q ⊗ A. We should
thus consider the set ΞA of groups between A and Q ⊗ A, or, equivalently,
subgroups of Q⊗A/A.

Given an element h of Hfin, we may evaluate the number of points of h
in any such subgroup U. Thus, we have a map from Hfin to the ring ZΞA

of Z-valued functions on ΞA.
The set ΞA admits a natural topology, as a subspace of the power set of

Q⊗A/A, with the function space topology.
Exercise 4.3.1. Show that the function from ΞA to Z determined by an ele-
ment of Hfin is continuous (where Z has the discrete topology).

Thus we have a map from Hfin to C(ΞA,Z), the ring of continuous func-
tions on ΞA.
Proposition 4.3.2. The map Hfin −→ C(ΞA,Z) is an isomorphism
Proof. The proof proceeds by identifying ΞA with two other spaces. Let
Xfin be the set of ring homomorphisms Hfin −→ Z. Any element h of Hfin

can be viewed as a function from Xfin to Z, sending ϕ ∈ Xfin to ϕ(h). We
topologiseXfin with the weak topology making these functions continuous.
Given ϕ : Hfin −→ Z, let Uϕ = {a ∈ Q⊗A : ϕ(

[a]
τ
) = 1}.

Claim. Uϕ is a subgroup containing A. The map ϕ 7→ Uϕ is a homeomorphism
from Xfin to ΞA.
Proof. If a ∈ Uϕ, any integer multiple of a has the same class as a, so it is
also in Uϕ. If also b ∈ Uϕ, the ϕ( [a]

τ

[b]
τ
) = 1, but [a][b] = [a][a + b], since

the map (x,y) 7→ (x, x+y) is Z-linear. Hence also [a+b]
τ

= 1, so a+b ∈ Uϕ.
The group contains A since the class of all elements in A is τ.

To show the map is a bijection, let U be a subgroup containing A, and
define ϕU( X

τn ) = #X(U). It is clear that this is the inverse of ϕ 7→ Uϕ.
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To show that ϕ 7→ Uϕ is continuous, it suffices to show that for each
a ∈ Q⊗A/A, the map ϕ 7→ Uϕ(a) (where Uϕ is viewed as a characteristic
function) is continuous. But this is the map ϕ 7→ ϕ(

[a]
τ
), which is contin-

uous by the definition of the topology. Since both spaces are compact and
Hausdorff, this proves the map is a homeomorphism. □

For any ring R, let I(R) be the boolean algebra of idempotents in R (with
meet (x,y) 7→ xy and join (x,y) 7→ x + y − xy). If f : R −→ S is a map to
another ring, the restriction I(f) : I(R) −→ I(S) is a map of boolean algebras.
In particular, if S is an integral domain, then I(S) = 2, and I(f) is an element
of the Stone space of I(R).

In Hfin each element [a]
τ

is an idempotent: [a][a] = [a]τ via the Z-linear
map (x,y) 7→ (x, x − y). Let B be the boolean subalgebra of I(Hfin) gener-
ated by such elements. We thus obtain a restriction map I : Xfin −→ St(B)
to the Stone space of B.

Claim. The map I : Xfin −→ St(B) is a homeomorphism

Proof. Injectivity is clear sinceHfin is generated by B. Surjectivity is seen by
extending a map ψ : B −→ 2 to Hfin via the relation ψ(a+ b) = ψ(a∨ b) +
ψ(a∧b). Continuity follows directly from the definition of the topology. □

It follows that we need to identify Hfin with the continuous functions
from St(B) to Z. Since St(B) is compact, each such function has a finite im-
age. Thus, we need to show that Hfin =

∪
n C(St(B), [−n,n]). This follows

from Stone duality, since Hfin is generated as an abelian group by B. □

Remark 4.3.3. (1) The proof identifiesΞA withXfin, the space ofZ-points
of the scheme Spec(Hfin), so that Hfin is the ring of regular func-
tions.

(2) The map of counting points in a model, used in the previous section,
corresponds to the subgroup Q⊗A.

□

4.4. Computing K(RES). Recall that RES is a reduct generated by (essen-
tially) 1-dimensional spaces RVa, for a ∈ Q ⊗ A, over the residue field
RV0. Thus, K(RES) includes K(RV0) = K(Var), the Grothendieck ring of
varieties. However, Unless a ∈ A, the space RVa has no point over 0, and
so is not isomorphic to the residue field RV0, and so K(RES) is generally
bigger. We have also considered the ring !K(RES), in which the classes of
these spaces are identified. However, this identification still does not col-
lapseK(RES) intoK(Var), since there is no reason that other subsets of RES
are identified with subsets of RV0

n. Nevertheless, we will identify sets in
RES with varieties equipped with additional data.

Again the difficulties are in the distinction between the (Henselian) ground
field K and its algebraic closure. This difference is measured by the Galois
groupG of K, or, more to the point in this case, by the inertia subgroup I: this inertia subgroup
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is the subgroup consisting of elements that act trivially on the residue field
ka.

We view RVa, for a ∈ Q⊗A, as a definable 1-dimensional vector space.
If a is a tuple a = (a1, . . . ,an), we denote by RVa the direct sum of the
RVai

, again a definable vector-space over RV0. We denote by LRES the
sub-category of definable sets in RES consisting of the linear spaces RVa

and linear definable maps between them.
The Galois action of I on Ka determines an action of I on each RVa(K

a),
which, by the definition of I, is linear over RV0(K

a) = ka. It is a basic fact
of valuation theory (in equal characteristic 0) that every 1-dimensional rep-
resentation of I occurs in this way (i.e., Q ⊗ A/A is the dual of I). Since I
is pro-finite, every representation is a direct sum of rank-one representa-
tions, so the category RepI of representation of I over ka is equivalent to
the category LRES.

Remark 4.4.1. We have described the equivalence on the level of categories.
However, LRES admits a tensor structure, determined by the rule RVa ⊗
RVb = RVa+b for singletons a,b, and multiplication inside RV equips the
equivalence above with a tensor structure. In the language of Tannakian
categories, the assignmentV 7→ V(Ka)determines a fibre functorω over ka,
so I can be described, without reference to the Galois group, as the group
corresponding to the neutralised Tannakian category (LRES,ω).

Alternatively, we may describe I in model theoretic language as the bind-
ing group corresponding to the internal cover RES of RV0 = ACF. □

Let X ⊆ RVa be a definable subset. By quantifier elimination, it corre-
sponds to a constructible subset of the corresponding representation. Con-
versely, any constructible subset of a representation is definable. In partic-
ular, any closed subset can be viewed as an affine variety over k, together
with an action of I. This I-variety satisfies the additional requirement that
it embeds (equivariantly) into a representation. However, this is not a re-
striction:

Lemma 4.4.2. Let I be an algebraic group acting on a quasi-projective variety X

(1) If I is finite, thenX can be covered by an invariant affine cover (i.e., by affine
I-varieties)

(2) If X is affine, it can be embedded equivariantly as a closed subvariety of an
affine space with a linear action of I.

sketch of proof. (1) Since I is finite, we need to show: any finite subset of
X is contained in an affine subvariety of X. This can be done by em-
bedding X in a projective space, and removing a sufficiently general
hyper-plane.

(2) Let R be the coordinate ring of X. The action of I on X induces
a linear action on R. Any representation of I is a union of finite
dimensional representations, so there is a finite-dimensional sub-
representation V of R that generates R as an algebra. The surjective
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map from the symmetric algebra on V to R determines an equivari-
ant closed embedding of X into the (affine space associated to the)
dual representation V∗ □

We denote by K(Vark, I) the Grothendieck ring of quasi-projective va-
rieties over k, together with an (algebraic) action of I. As in 4.2.3, we let
K(RES) be the quotient of K(RES) by all the classes [RVa], and similarly,
K(Vark, I) is the quotient of K(Vark, I) by the classes of A1− {0}, with an ar-
bitrary action. Then the above discussion (together with the lemma) shows
the following.

Proposition 4.4.3. Let I be the inertia group of the base field K. Then K(RES)
is isomorphic to the Grothendieck ring K(Vark, I) of quasi-projective varieties over
k equipped with an action of I. This isomorphism descends to an isomorphism
Φ0 : K(RES) −→ K(Vark, I).

4.5. The motivic Milnor fibre. As an application, we outline the statement
and proof of one of the main results in [13].

Consider again the situation from the beginning of Section 1: We are
given a subvariety X0 of a smooth variety X, determined by an equation
f = 0, where f is a regular function on X, all over C. We would like to study
the topological properties of a singular point of X0, i.e., a point xwhere the
differential df(x) is zero. We fix all these data; in fact, the whole discussion
will be local, so we assume thatX = An, so that f(t1, . . . , tn) is a polynomial.
For example, one could consider X = A2, x = (0, 0) and f(x,y) = y2 − x3,
or X = A3, x = 0, and f(x,y, z) = x2 + y2 − z2.

While X0 is singular at x, we may hope it looks nicer when slightly de-
formed. Milnor’s fibration theorem states that given a sufficiently small B
around x, we may find a disc D around 0 in A1(C), contained in f(B), such
that the restriction of f to B∩ f−1(D∗) is a locally trivial (in fact, smooth) fi-
bration overD∗ = D \ {0}. The diffeomorphism type F of each fibre is called
the Milnor fibre of f at x (it is independent of the choice of B and D). Milnor fibre

Topologically, D∗ is a punctured disc. Pulling back the fibration to the
universal cover E of D∗, we obtain a trivial fibration over E, with the same
fibre F. Fixing a trivialisation, one obtains an action of the group G0 =
Aut(E/D∗) on F (changing the trivialisation amounts to conjugation in G0,
which is trivial since G0 = Z is abelian, so the action is well defined). This
action is called the Monodromy action. Monodromy action

So we have assigned to the original data a space F, and an action of the
group G0. The functor of cohomology with compact supports assigns, to each
space Z a finite dimensional graded Q-vector space H∗

c(Z,Q) (the details of
the particular construction of these vector spaces will not be important for
us), and the action ofG0 on F determines a representation ofG0 onH∗

c(F,Q).
Applying the trace map, we obtain a character Λ : G0 −→ Q. A theorem of
Deligne asserts thatΛ(n) = 0 whenever n > 0 is less than the multiplicity of
f at x (this was first proven for n = 1 by A’Campo, [2, 1]).
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The multiplicity is defined below. At this point we only mention that
the action of G0 on every such space H∗

c is algebraic, and therefore factors
through a finite quotient. It follows that we may replace G0 by its pro-finite
completion G. Geometrically, rather than going to the universal cover E of
D∗, we pass to the finite (Galois) covers En −→ D∗, where En = D∗, and
the map is given by z 7→ zn (if D is the unit disc). The automorphism
group Aut(En/D∗) acts as before, and the advantage is that now every
cover is algebraic, and G is the inverse limit of the automorphism groups
Aut(C(t 1

n )/C(t)). The character Λ can be viewed as a (continuous) charac-
ter on G.

4.5.1. Multiplicity and arc spaces. It follows directly from the definition of df
that for u + vt ∈ An(C[t]/t2), f(u + vt) = f(u) + df(u)(v)t. Thus, u + vt
is a solution of f(T) = 0 in C[t]/t2 (i.e., a C[t]/t2-point of X0) if and only
if u ∈ X0(C), and v is a tangent vector to X0 at u. In particular, u is a
singular point ofX0 precisely when the image under f of the first infinitesimal
neighbourhood B1(x) = {y ∈ X(C[t]/t2) : y(0) = x} of x in X consists of x
alone (here y 7→ y(0) is the map induced by sending t to 0; we will also
denote it by y 7→ ȳ).

More generally, we may define the n-th infinitesimal neighbourhood of
x by Bn(x) = {y ∈ X(C[t]/tn+1) : y(0) = x}, and the multiplicity of f at x asmultiplicity

the smallest n for which f(Bn) ̸= 0. Thus, the multiplicity is 1 if and only if
x is a regular point of X0. In the case that f is a polynomial of one variable,
it is easily checked that this definition coincides with the usual multiplicity
of the zero x of f. We note also that if we define

Xx,n = {y ∈ X(C[t]/tn+1) : y(0) = x, f(y) = tn} (36)

then the multiplicity is the smallest n for which Xx,n is non-empty.
The collection of algebras An = C[t]/tn+1 is equipped with maps An −→

Anm, t 7→ tm, and the setsXx,n are compatible with these maps: Xx,n maps
into Xx,nm. We set A = lim−→An with respect to these maps. The group G
acts onA overA1: it acts onAn through the finite quotient Aut(En/D

∗), by
restricting the action on the disc to the formal neighbourhood. Thus, this
system is dual to the (formal analogue of the) system of topological covers
of the punctured disc.

In this correspondence, we may view the elements of Xx,n as global sec-
tions of the pullback of the Milnor fibration to En: Setting

Xx,∞ = {y ∈ X(A) : y(0) = x, f(y) = t ∈ A1} (37)

(which can be viewed as the pullback of the Milnor fibre to the universal
cover), we see that Xx,n = Xx,∞Hn (fixed points under Hn), where Hn is
the kernel of the map from G to Aut(En/D∗). We set Xx,g = Xx,∞g for
g ∈ G, so that Xx,n = Xx,gn for any topological generator g of G. Hence,
G/g acts continuously on Xx,g.
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The set of all An-points of X can be canonically identified with the set of
complex points of an algebraic variety Ln(X), the n-th truncated arc space. truncated arc space

Xx,n is thus a locally closed subset of Ln(X), and can be viewed as a topo-
logical subspace (with the analytic topology), and we may compute its com-
pactly supported Euler characteristic χc(Xx,n), the trace of the identity on
H∗

c. The description above, combined with the Lefschetz fixed point princi-
ple, provides intuition for the following theorem of Denef and Loeser ([7]).
Theorem 4.5.2. Under the above conditions and terminology, for any g ∈ G,

Λ(g) = χc(Xx,g) (38) {E:milnor}

As mentioned above, forn smaller than the multiplicity, Xx,n is empty, so
this theorem implies Deligne’s result. Its original proof used explicit calcu-
lations, but later Hrushovski and Loeser ([13]) found a proof using motivic
integration, which is outlined below.

4.5.3. Berkovich spaces. The first step is to replace the complex-analytic spaces
that occur in the statement by objects more accessible to the model theo-
retic methods developed above. This is achieved by replacing the complex-
analytic Milnor fibre with the motivic Milnor fibre of Nicaise and Sebag ([20]). motivic Milnor fibre

This a non-archimedean (Berkovich) analytic space over C((t)). The main
relevant facts about these spaces are as follows:

(1) To any definable set U in VF over C((t)), one may assign a Berkovich
space Uan, and its base-change Uan over Ĉ((t))a, the completed
algebraic closure. In particular, this base change admits an action of
the Galois group G of C((t)).

(2) There exists a (compactly supported) cohomology theory that as-
signs to each Berkovich space X over Ĉ((t))a a finite-dimensional
graded vector spaceH∗

c(X,Ql) over Ql (l-adic numbers). This coho-
mology theory satisfies the standard properties.

(3) The motivic Milnor fibre mentioned above is determined by the de-
finable set Xx = {y ∈ X(O) : f(y) = t, ȳ = x}. Its cohomology
coincides (as a G-representation) with the cohomology of the topo-
logical Milnor fibre (with coefficients in Ql).

The combination of the first two properties above determines an additive
(and multiplicative) invariant on definable sets inVF, with values inK(RepG),
the Grothendieck ring of the category of l-adic, finite-dimensional graded
representations. There is, therefore, an induced map EUet : K(VF) −→
K(RepG). According to the last point, we are interested in the value of EUet

on the class of the definable set Xx.

4.5.4. Outline of the proof. The structure of the proof can be described via
the following commutative diagram, where g ∈ G = Gal(C((t)), G/g is the
quotient of G by the closed subgroup generated by g, and as in Prop. 4.4.3,
K(RES) is the quotient of K(RES) by all the classes [RVα] (for α ∈ Q, the 0-
definable points of Γ), and likewiseK(VarC,G) is the quotient ofK(VarC,G)
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by the classes of Gm = A1 \ {0}, with any action of G (we will used the
notation Gm, despite the fact that the group structure is irrelevant). RESg

consists of the points of RES fixed by g (this is a union of definable sets).

K(VF) K(RES) K(RESg)

K(VarC,G) K(VarC,G/g)

K(RepG) Ql K(RepG/g)

EUΓ

EUet

(∗) Φ0

≃

∩
Φg

≃
Y 7→Yg

H∗
c H∗

c

Tr(g) χc=Tr(1)

The isomorphism Φ0 is the one in 4.4.3 (note that in this case, the inertia
group is the whole Galois group G, since the residue field is algebraically
closed), and Φg is its restriction to K(RESg). Y 7→ Yg is the map induced
by associating to a G-variety Y the sub-variety of g-fixed points (on which
G/g then acts continuously). The commutativity of the upper-right square
follows directly from the proof of 4.4.3.
H∗

c is the map induced by (étale) cohomology with compact support. This
makes sense, sinceH∗

c(Gm) = 0. The commutativity of the bottom square is
a variant of the Lefschetz fixed-point theorem, cf [13, § 5.5] and the reference
there.

The commutativity of the triangle (∗) is proved in [13, Thm 5.4.1]. The
main idea is the following: since both sides are ring homomorphisms, by
the main integration results 3.4.6 and 3.4.7, it suffices to prove the statement
for (preimages of) elements of K(Γ) and K(RES) separately. For Γ, the ex-
plicit formula for EUΓ shows that EUΓ(b) = 0 ∈ K(RES) for b ∈ K(Γ) of
positive dimension. On the cohomological side, one uses o-minimality of
Γ to reduce the computation of EUet to computations of cohomology of 1-
dimensional annuli, where the result is classical ([13, Lemma 5.4.2]). On the
RES part, one uses again the formula for EUΓ to note that the class corre-
sponding to a variety over the residue field is simply its pullback to the val-
ued field. The result then follows from specialisation results of Berkovich,
along with tracking the action of G (cf. [13, Lemma 5.4.3]).

Given the commutativity of the diagram, the proof proceeds as follows.
The motivic Milnor fibre Xx determines an element of K(VF). According
to the comparison with singular cohomology, the character Λ we are inter-
ested in is obtained as EUet([Xx]). On the other hand, the space Xx,g is
an algebraic variety over C with an action of G/g, so determines a class in
K(VarC,G/g) = K(RESg). Hence, to prove the equation (38), it suffices to
prove that Xx and Xx,g determine the same class in K(RESg).

This is done as follows. Consider the set Xx = {y ∈ X(O) : rv(f(y)) =
rv(t), ȳ = x}. Let A ′ = O(C((t))a)/I, where I is the ideal of elements with
valuation greater than 1. Then Xx(C((t))a) is the pullback, from A ′, of the
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set of elements y ∈ A ′ with f(y) = t and ȳ = x. But A ′ is isomorphic
to the ring A = lim−→An considered in 4.5.1, where An is identified with
A ′

n = C[t 1
n ]/t1+

1
n , and the maps in the sequence become inclusions. It

follows (using the explicit formula for EUΓ) that Xx,g = EUΓ(Xx)
g.

Hence, it suffices to show that EUΓ(Xx) = EUΓ(Xx). The map f : Xx −→ B,
where B is the open ball of radius 1 around t, is a definable fibration, with
all fibres isomorphic to the motivic Milnor fibre Xx. Hence, EUΓ(Xx) =
EUΓ(Xx) · EUΓ(B). But B is an open ball, so EUΓ(B) = 1, and we obtain the
result.
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